
z/OS

Metal C Programming Guide and
Reference
Version 2 Release 1

SC14-7313-00

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 163.

This edition applies to Version 2 Release 1 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures v

Tables vii

About this document ix
Who should read this document ix
Where to find more information ix

Information updates on the web ix
The z/OS Basic Skills Information Center . . . ix

How to read syntax diagrams x

How to send your comments to IBM xiii
If you have a technical problem xiii

z/OS Version 2 Release 1 summary of
changes xv

Chapter 1. About IBM z/OS Metal C . . . 1
Metal C environment 1
Programming with Metal C 2

Metal C and MVS linkage conventions 2
Compiler-generated HLASM source code 4
Prolog and epilog code 12
Supplying your own HLASM statements . . . 20
Inserting HLASM instructions into the generated
source code 21
AMODE-switching support 31
RENT mode support 32
argc argv parsing support 35
AR-mode programming support 35
Defining an alternative name for function "main" 43
Building Metal C programs 44

Summary of useful references for the Metal C
programmer 52

Chapter 2. Header files 55
builtins.h 55
ctype.h 55
float.h 55
inttypes.h 56
limits.h 58
math.h 59
metal.h 60
stdarg.h 60
stddef.h 60
stdio.h 60
stdint.h 61
stdlib.h 62
string.h 63

Chapter 3. C functions available to
Metal C programs 65
Characteristics of Metal C runtime library functions 65

System and static object libraries 65
User-replaceable heap services 67
abs() — Calculate integer absolute value. 69
atoi() — Convert character string to integer. . . . 70
atol() — Convert character string to long 70
atoll() — Convert character string to signed long
long 71
calloc() — Reserve and initialize storage 71
__cinit() - Initialize a Metal C environment 72
__cterm() - Terminate a Metal C environment . . . 75
div() — Calculate quotient and remainder 75
free() — Free a block of storage. 76
isalnum() to isxdigit() — Test integer value 76
isalpha() — Test for alphabetic character
classification 77
isblank() — Test for blank character classification . . 78
iscntrl() — Test for control classification 78
isdigit() — Test for decimal-digit classification . . . 78
isgraph() — Test for graphic classification 78
islower() — Test for lowercase 78
isprint() — Test for printable character classification 78
ispunct() — Test for punctuation classification . . . 78
isspace() — Test for space character classification . . 78
isupper() — Test for uppercase letter classification 78
isxdigit() — Test for hexadecimal digit Classification 78
labs() — Calculate long absolute value 79
ldiv() — Compute quotient and remainder of
integral division 79
llabs() — Calculate absolute value of long long
integer 79
lldiv() — Compute quotient and remainder of
integral division for long long type 80
malloc() — Reserve storage block 81
__malloc31() — Allocate 31–bit storage 81
memccpy() — Copy bytes in memory 82
memchr() — Search buffer 82
memcmp() — Compare bytes 83
memcpy() — Copy buffer 83
memmove() — Move buffer 84
memset() — Set buffer to value 84
qsort() — Sort array 85
rand() — Generate random number 85
rand_r() — Pseudo-random number generator. . . 86
realloc() — Change reserved storage block size . . 86
snprintf() — Format and write data 87
sprintf() — Format and Write Data 88
srand() — Set Seed for rand() Function 94
sscanf() — Read and Format Data 94
strcat() — Concatenate Strings 99
strchr() — Search for Character 100
strcmp() — Compare Strings 101
strcpy() — Copy String 101
strcspn() — Compare Strings 102
strdup() — Duplicate a String 102
strlen() — Determine String Length 103
strncat() — Concatenate Strings 103

© Copyright IBM Corp. 2013 iii

strncmp() — Compare Strings 104
strncpy() — Copy String. 105
strpbrk() — Find Characters in String 105
strrchr() — Find Last Occurrence of Character in
String 106
strspn() — Search String. 106
strstr() — Locate Substring 107
strtod — Convert Character String to Double. . . 107
strtof — Convert Character String to Float. . . . 108
strtok() — Tokenize String 110
strtok_r() — Split String into Tokens 111
strtol() — Convert Character String to Long . . . 111
strtold — Convert Character String to Long Double 113
strtoll() — Convert String to Signed Long Long . . 114
strtoul() — Convert String to Unsigned Integer . . 115
strtoull() — Convert String to Unsigned Long Long 116
tolower(), toupper() — Convert Character Case . . 118
va_arg(), va_copy(), va_end(), va_start() — Access
Function Arguments 118
vsnprintf() — Format and print data to fixed
length buffer 120
vsprintf() — Format and Print Data to Buffer . . . 121
vsscanf() — Format Input of a STDARG Argument
List 121

Appendix A. Function stack
requirements 123

Appendix B. CICS programming
interface examples 127
Runtime environment adapter 127
CICS application programming interface example 128

Data structures 128
Example description 128
Example code 129

CICS exit programming interface example 142
Example code 144

CICS definitions 153
JCL example. 155

Appendix C. Accessibility 159
Using assistive technologies 159
Keyboard navigation of the user interface 159
Dotted decimal syntax diagrams 159

Notices 163
Policy for unsupported hardware. 164
Minimum supported hardware 165
Programming interface information 165
Standards 165
Trademarks 165

Index 167

iv z/OS V2R1.0 Metal C Programming Guide and Reference

Figures

1. Function entry point marker in generated
assembler code 6

2. Function property block fixed area fields . . . 7
3. Function property block in generated assembler

code 9
4. Prefix data fixed area fields 10
5. A sample program to generate prefix data 12
6. Prefix data generated 12
7. Specification of your own prolog and epilog

code for a function 13
8. SCCNSAM(CCNZGBL) 16
9. SCCNSAM(MYPROLOG) 18

10. SCCNSAM(MYEPILOG) 20
11. Simple code format string. 22
12. Code format string with two instructions 22
13. Code format string with two instructions,

formatted for readability 22
14. Substitution of a C variable into an output

__asm operand 23
15. HLASM source code embedded by the

compiler 23
16. Substitution of a C pointer into an __asm

operand. 24
17. __asm operand lists 24
18. Compiler-generated HLASM code from the

__asm statement 25
19. Unsuccessful attempt to specify registers 25
20. Register specification with clobbers 26
21. Incorrect __asm operand definition for both

input and output. 26
22. Incorrect compiler-generated HLASM source

code from the incorrect __asm operand
definition for both input and output 26

23. Successful definition of an __asm operand for
both input and output 27

24. Correct compiler-generated HLASM source
code from the correct __asm operand
definition for both input and output 27

25. The + constraint to define an __asm operand
for both input and output. 28

26. Error: Redundant definition of an __asm
operand. 28

27. Specifying and using the WTO macro (no
reentrancy). 29

28. Support for reentrancy in a code format string 29
29. Code that supplies specific DSECT mapping

macros 30
30. Register specification 31
31. AMODE31 program that calls an AMODE64

program 32
32. Far pointer sizes under different addressing

modes 36
33. Built-in functions for setting far-pointer

components 38

34. Built-in functions for getting far-pointer
components 38

35. Library functions for use only in AR-mode
functions 39

36. Allocation and deallocation routines 40
37. Copying a C string pointer to a far pointer 42
38. Example of a simple dereference of a far

pointer 43
39. Metal C application build process 44
40. C source file (mycode.c) that builds a Metal C

program 45
41. C compiler invocation to generate mycode.s 45
42. Command that invokes HLASM to assemble

mycode.s 46
43. Command that compiles an HLASM source

file containing symbols longer than eight
characters 46

44. Command that binds mycode.o and produces
a Metal C program in an MVS data set . . . 46

45. Commands that compile and link programs
with different addressing modes 46

46. Job step that compiles
HLQ.SOURCE.C(MYCODE) 47

47. Assembly step of
HLQ.SOURCE.ASM(MYCODE) 47

48. Job step that binds the generated HLASM
object into a program 47

49. The process of building Metal C programs
with IPA 48

50. JCL that invokes the ASMLANGX utility 51
51. CICS API example flow 128
52. CICS Bootstrap for metal C code example:

MTLBOOT 130
53. CICS API used under Metal C example code:

MTLHALO 137
54. Metal C for CICS main prolog: MTLENT 138
55. Metal C for CICS main epilog: MTLXIT 139
56. Metal C for CICS subroutine prolog:

MTLSENT 140
57. Metal C for CICS subroutine epilog:

MTLSXIT 142
58. CICS XPI example flow 143
59. CICS bootstrap for Metal C example program:

MTLBTXPI 144
60. CICS exit programming API example

program: MTL2XPI 151
61. CICS CEDA definition for the API example

program 154
62. CICS transaction definition 154
63. Defining the CICS XPI example in the CEDA 155
64. CICS LNKXPI JCL example 155
65. CICS ASMXPI JCL example 156
66. CICS CCXPI JCL example 157
67. CICS OPTXPI JCL example 158

© Copyright IBM Corp. 2013 v

vi z/OS V2R1.0 Metal C Programming Guide and Reference

Tables

1. Syntax examples xi
2. Compiler-generated global SET symbols 14
3. User modifiable global SET symbols 16
4. Language constructs that may have special

impact on far pointers 36
5. Implicit ALET associations for

AR-mode-function variables 37
6. Summary of useful references for the Metal C

programmer 52

7. Definitions in float.h 56
8. csysenv argument in __cinit() 72
9. csysenvtkn argument in __cterm() 75

10. Flag Characters for sprintf() Family 89
11. Precision Argument in sprintf() 91
12. Type Characters and their Meanings 92
13. Conversion Specifiers in sscanf() 97
14. Stack frame requirements for Metal C runtime

functions 123

© Copyright IBM Corp. 2013 vii

viii z/OS V2R1.0 Metal C Programming Guide and Reference

About this document

This document contains reference information that is intended to help you
understand the IBM® z/OS® Metal C runtime library and use the header files and
functions provided by the runtime to write applications that can be compiled using
the METAL option of the z/OS XL C compiler.

For more information about the z/OS XL C compiler and the METAL compiler
option, see z/OS XL C/C++ User's Guide.

Who should read this document
This document is intended for application programmers interested in writing Metal
C applications using the z/OS Metal C runtime library.

Where to find more information
For an overview of the information associated with z/OS, see z/OS Information
Roadmap.

Information updates on the web
For the latest information updates that have been provided in PTF cover letters
and documentation APARs for z/OS, see the online document at:
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/Shelves/ZDOCAPAR

This document is updated weekly and lists documentation changes before they are
incorporated into z/OS publications.

The z/OS Basic Skills Information Center
The z/OS Basic Skills Information Center is a Web-based information resource
intended to help users learn the basic concepts of z/OS, the operating system that
runs most of the IBM mainframe computers in use today. The Information Center
is designed to introduce a new generation of Information Technology professionals
to basic concepts and help them prepare for a career as a z/OS professional, such
as a z/OS system programmer.

Specifically, the z/OS Basic Skills Information Center is intended to achieve the
following objectives:
v Provide basic education and information about z/OS without charge
v Shorten the time it takes for people to become productive on the mainframe
v Make it easier for new people to learn z/OS.

To access the z/OS Basic Skills Information Center, open your Web browser to the
following Web site, which is available to all users (no login required): z/OS Basic
Skills Information Center home page (http://publib.boulder.ibm.com/infocenter/
zos/basics/index.jsp)

© Copyright IBM Corp. 2013 ix

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/Shelves/ZDOCAPAR
http://publib.boulder.ibm.com/infocenter/zos/basics/index.jsp
http://publib.boulder.ibm.com/infocenter/zos/basics/index.jsp
http://publib.boulder.ibm.com/infocenter/zos/basics/index.jsp

How to read syntax diagrams
This section describes how to read syntax diagrams. It defines syntax diagram
symbols, items that may be contained within the diagrams (keywords, variables,
delimiters, operators, fragment references, operands) and provides syntax examples
that contain these items.

Syntax diagrams pictorially display the order and parts (options and arguments)
that comprise a command statement. They are read from left to right and from top
to bottom, following the main path of the horizontal line.

For users accessing the Information Center using a screen reader, syntax diagrams
are provided in dotted decimal format.

Symbols

The following symbols may be displayed in syntax diagrams:

Symbol
Definition

��─── Indicates the beginning of the syntax diagram.

───� Indicates that the syntax diagram is continued to the next line.

�─── Indicates that the syntax is continued from the previous line.

───�� Indicates the end of the syntax diagram.

Syntax items

Syntax diagrams contain many different items. Syntax items include:
v Keywords - a command name or any other literal information.
v Variables - variables are italicized, appear in lowercase, and represent the name

of values you can supply.
v Delimiters - delimiters indicate the start or end of keywords, variables, or

operators. For example, a left parenthesis is a delimiter.
v Operators - operators include add (+), subtract (-), multiply (*), divide (/), equal

(=), and other mathematical operations that may need to be performed.
v Fragment references - a part of a syntax diagram, separated from the diagram to

show greater detail.
v Separators - a separator separates keywords, variables or operators. For example,

a comma (,) is a separator.

Note: If a syntax diagram shows a character that is not alphanumeric (for
example, parentheses, periods, commas, equal signs, a blank space), enter the
character as part of the syntax.

Keywords, variables, and operators may be displayed as required, optional, or
default. Fragments, separators, and delimiters may be displayed as required or
optional.

Item type
Definition

Required
Required items are displayed on the main path of the horizontal line.

x z/OS V2R1.0 Metal C Programming Guide and Reference

Optional
Optional items are displayed below the main path of the horizontal line.

Default
Default items are displayed above the main path of the horizontal line.

Syntax examples

The following table provides syntax examples.

Table 1. Syntax examples

Item Syntax example

Required item.

Required items appear on the main path
of the horizontal line. You must specify
these items.

�� KEYWORD required_item ��

Required choice.

A required choice (two or more items)
appears in a vertical stack on the main
path of the horizontal line. You must
choose one of the items in the stack.

�� KEYWORD required_choice1
required_choice2

��

Optional item.

Optional items appear below the main
path of the horizontal line.

�� KEYWORD
optional_item

��

Optional choice.

An optional choice (two or more items)
appears in a vertical stack below the main
path of the horizontal line. You may
choose one of the items in the stack.

�� KEYWORD
optional_choice1
optional_choice2

��

Default.

Default items appear above the main path
of the horizontal line. The remaining
items (required or optional) appear on
(required) or below (optional) the main
path of the horizontal line. The following
example displays a default with optional
items.

��
default_choice1

KEYWORD
optional_choice2
optional_choice3

��

Variable.

Variables appear in lowercase italics. They
represent names or values.

�� KEYWORD variable ��

About this document xi

Table 1. Syntax examples (continued)

Item Syntax example

Repeatable item.

An arrow returning to the left above the
main path of the horizontal line indicates
an item that can be repeated.

A character within the arrow means you
must separate repeated items with that
character.

An arrow returning to the left above a
group of repeatable items indicates that
one of the items can be selected,or a
single item can be repeated.

�� �KEYWORD repeatable_item ��

�� �

,

KEYWORD repeatable_item ��

Fragment.

The fragment symbol indicates that a
labelled group is described below the
main syntax diagram. Syntax is
occasionally broken into fragments if the
inclusion of the fragment would overly
complicate the main syntax diagram.

�� KEYWORD fragment ��

fragment:

,required_choice1
,default_choice

,required_choice2
,optional_choice

xii z/OS V2R1.0 Metal C Programming Guide and Reference

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the "Contact us" web page for z/OS (http://

www.ibm.com/systems/z/os/zos/webqs.html).
3. Mail the comments to the following address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
US

4. Fax the comments to us, as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:
v Your name and address.
v Your email address.
v Your telephone or fax number.
v The publication title and order number:

z/OS V2R1.0 Metal C Programming Guide and Reference
SC14-7313-00

v The topic and page number that is related to your comment.
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:
v Contact your IBM service representative.
v Call IBM technical support.
v Visit the IBM Support Portal at z/OS support page (http://www.ibm.com/

systems/z/support/).

© Copyright IBM Corp. 2013 xiii

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/
http://www.ibm.com/systems/z/support/

xiv z/OS V2R1.0 Metal C Programming Guide and Reference

z/OS Version 2 Release 1 summary of changes

See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):
v z/OS Migration, GA32-0889

v z/OS Planning for Installation, GA32-0890

v z/OS Summary of Message and Interface Changes, SA23-2300

v z/OS Introduction and Release Guide, GA32-0887

© Copyright IBM Corp. 2013 xv

xvi z/OS V2R1.0 Metal C Programming Guide and Reference

Chapter 1. About IBM z/OS Metal C

The XL C METAL compiler option generates code that does not require access to
the Language Environment® support at run time. The METAL option provides
C-language extensions that allow you to specify assembly statements that call
system services directly. Using these language extensions, you can provide almost
any assembly macro, and your own function prologs and epilogs, to be embedded
in the generated HLASM source file. When you understand how the
METAL-generated code uses MVS™ linkage conventions to interact with HLASM
code, you can use this capability to write freestanding programs.

Because a freestanding program does not depend on any supplied runtime
environment, it must obtain the system services that it needs by calling assembler
services directly. For information about how METAL-generated code uses MVS
linkage conventions, see “Metal C and MVS linkage conventions” on page 2. For
information about embedding assembly statements in the METAL-generated
HLASM source code, see “Inserting HLASM instructions into the generated source
code” on page 21.

You do not always have to provide your own libraries. IBM supplies a subset of
the XL C runtime library functions. This subset includes commonly used basic
functions such as malloc(). For more information, see Chapter 3, “C functions
available to Metal C programs,” on page 65.

Note: You can use these supplied functions or the ones that you provide yourself.

Metal C environment
Some of the functions require that an environment be created before they are
called. You can create the environment by using a new function, __cinit(). This
function will set up the appropriate control blocks and return an environment
token to the caller. The caller must then ensure that GPR 12 contains this token
when calling Metal C functions that require an environment. When the
environment is no longer needed, a new function, __cterm(), can be used to
perform cleanup, freeing all resources that had been obtained by using the token.

An environment created by __cinit() can be used in both AMODE 31 and AMODE
64. In conjunction with this, the Metal C run time maintains both a below-the-bar
heap and an above-the-bar heap for each environment. Calls to __malloc31()
always affect the below-the-bar heap. Calls made in AMODE 31 to all other
functions that obtain storage will affect the below-the-bar heap; calls made in
AMODE 64 affect the above-the-bar heap.

The storage key for all storage obtained on behalf of the environment is the psw
key of the caller. The caller needs to ensure that the environment is always used
with the same or compatible key.

Metal C environments are intended to be used serially by a single dispatchable
unit of work. If you need to share environments between multiple dispatchable
units, you must make sure that the use of each environment is serialized.

© Copyright IBM Corp. 2013 1

Programming with Metal C
When you want to build an XL C program that can run in any z/OS environment,
you can use the Metal C programming features provided by the XL C compiler as
a high level language (HLL) alternative to writing the program in assembly
language.

Metal C programming features facilitate direct use of operating system services.
For example, you can use the C programming language to write installation exits.

When the METAL option is in effect, the XL C compiler:
v Generates code that is independent of Language Environment.

Note: Although the compiler generates default prolog and epilog code that
allows the Metal C code to run, you might be required to supply your own
prolog and epilog code to satisfy runtime environment requirements.

v Generates code that follows MVS linkage conventions. This facilitates
interoperations between the Metal C code and the existing code base. See “Metal
C and MVS linkage conventions.”

Note: Metal C also provides a feature that improves the program's runtime
performance. See “NAB linkage extension” on page 4.

v Provides support for accessing the data stored in data spaces. See “AR-mode
programming support” on page 35.

v Provides support for embedding your assembly statements into the
compiler-generated code. See “Inserting HLASM instructions into the generated
source code” on page 21.

If you use the METAL compiler option together with XL C optimization
capabilities, you can use C to write highly optimized system-level code.

The METAL compiler option implies certain other XL C compiler options and
disables others. For detailed information, see the METAL option in z/OS XL C/C++
User's Guide.

Metal C and MVS linkage conventions
Because Metal C follows MVS linkage conventions, it enables the
compiler-generated code to interoperate directly with the existing code base to
facilitate the following operations:
v Passing parameters. See “Parameter passing.”
v Returning values. See “Return values” on page 3.
v Setting up function save areas. See “Function save areas” on page 3.

For detailed information about MVS linkage conventions, see the topic about
linkage conventions in z/OS MVS Programming: Assembler Services Guide, SA23-1368.

Parameter passing

The pointer to the parameter list is in GPR 1.

The parameter list is divided into slots.
v The size of each slot depends on the addressing mode:

– For 31-bit mode (AMODE 31), each slot is four bytes in length.

2 z/OS V2R1.0 Metal C Programming Guide and Reference

– For 64-bit mode (AMODE 64), each slot is eight bytes in length.
v Metal C derives the content of each slot from the function prototype, which

follows C by-value semantics (that is, the value of the parameter is passed into
the slot).

Notes:

1. If a parameter needs to be passed by reference, the function prototype must
specify a pointer of the type to be passed.

2. Under AMODE 31 only: The high-order bit is set on the last parameter if
both of the following are true:
– The called function is a variable arguments function.
– The last parameter passed is a pointer.

Return values

For any addressing mode, integral type values are returned in GPR 15. Under
AMODE 31 only, a 64-bit integer value is returned in GPR 15 + GPR 0 (that is, the
high-half of the 64-bit value is returned in GPR 15 and the low-half is returned in
GPR 0). All other types are returned in a buffer whose address is passed as the
first parameter.

Function save areas

GPR 13 contains the pointer to the dynamic storage area (DSA).

The DSA includes:
v 72-byte save area size for an AMODE 31 function.
v Parameter area for calling other functions. The default pointer size for a

parameter or return value is based on the amode attribute of the function
prototype.

v Temporary storage that is preallocated for the compiler-generated code and the
user-defined automatic variables.

The save area is set up at the beginning of the DSA.

If the function calls only primary-mode functions, the save area format depends on
the AMODE:
v Under AMODE 31, the save area takes the standard 18-word format.
v Under AMODE 64, the save area takes the 36-word F4SA format and the

compiler will generate code to set up the F4SA signature in the second word of
the save area.

If the function needs to call an AR-mode function, the save area will take the
54-word F7SA format, regardless of the addressing mode.

The F4SA signature generation can be suppressed by setting the &CCN_SASIG global
SET symbol to 0 in your prolog code. For information about the &CCN_SASIG global
SET symbol, see Table 3 on page 16 User modifiable global SET symbols.

Chapter 1. About IBM z/OS Metal C 3

NAB linkage extension

Metal C code needs to use dynamic storage area (DSA) as stack space. Each time a
function is called, its prolog code acquires this space and, when control is returned
to the calling function, its epilog code releases the stack space.

Metal C avoids excessive acquisition and release operations by providing a
mechanism that allows a called function to rely on pre-allocated stack space. This
mechanism is the next available byte (NAB). All Metal C runtime library functions,
as well as functions with a default prolog code, use it and expect the NAB address
to be set by the calling function. The code that is generated to call a function
includes the setup instructions to place the NAB address in the "Address of next
save area" field in the save area. The called function simply goes to the calling
function's save area to pick up the NAB address that points to its own stack space.
As a result, the called function does not need to explicitly obtain and free its own
stack space.

Note: If usage of the NAB linkage extension requires more stack space than has
been allocated, there will be unexpected results. The program must establish a
DSA that is large enough to ensure the availability of stack space to all
downstream programs. Downstream programs include all functions that are
defined in the program as well as the library functions listed in Appendix A,
“Function stack requirements,” on page 123.

The location of the "Address of next save area" field depends on the save area
format:
v In the standard 72-byte save area, it is the third word.
v In the F4SA or F7SA save area, it is the 18th doubleword.

Compiler-generated HLASM source code
When the METAL option is in effect, the XL C compiler generates code in the
HLASM source code format.

Characteristics of compiler-generated HLASM source code
Any assembly instructions that you provide need to work with the instructions
that are generated by the compiler. Before you provide those instructions, you need
to be aware of the characteristics of compiler-generated HLASM source code.

You need to be aware that:
v Because the compiler uses relative-branching instructions, it is not necessary to

establish code base registers. When the compiler detects user-embedded
assembly statements, you can use the IEABRCX DEFINE instruction to assist any
branching instructions that might rely on establishment of a code base register.
For other instructions (such as LA or EX) that rely on the establishment of a
code base register, you might need to add code to establish your own code base
register. To disable the effect of IEABRCX, you can add the instruction IEABRCX
DISABLE. For more information about the IEABRCX macro, see z/OS MVS
Programming: Authorized Assembler Services Reference EDT-IXG.

v If the compiler needs to produce literals, GPR 3 will be set up as the base
register to address the literals. This addressability is established after the prolog
code. The literals are organized by the LTORG instruction placed at the end of
the epilog code. With the presence of user-embedded assembly statements, the
compiler assumes there will be literals and establishes GPR 3 to address those
literals.

4 z/OS V2R1.0 Metal C Programming Guide and Reference

v If you want code to be naturally reentrant, you must not use writable static or
external variables; such variables are part of the code.

v There is only one CSECT for each compilation unit. The CSECT name is
controlled by the CSECT option.

v Due to the flat name space and the case insensitivity required by HLASM, the
compiler prepends extra qualifiers to user names to maintain the uniqueness of
each name seen by HLASM. This is referred to as name encoding. External
symbols are not subject to the name-encoding scheme as they need to be
referenced by the exact symbol names.

v The external symbols are determined by the compiler LONGNAME option.
– If the NOLONGNAME option is in effect:

- All external symbols are truncated to eight characters.
- All external symbols are converted to upper case.
- All "_" characters are replaced with the "@" character.

– If the LONGNAME option is in effect the compiler emits an ALIAS
instruction to make the real C name externally visible. Because the length
limit supported by the ALIAS instruction depends on the HLASM release, the
C compiler does not enforce any length limit here.

Note: The HLASM GOFF option is necessary to allow the ALIAS instructions
to be recognized. See Figure 43 on page 46.

v GPR 13 is established as the base of the stack space.
v GPR 10 and GPR 11 may be used exclusively to address static and constant data.

They should not be used in the user-embedded assembly statements.
v The compiler will generate code to preserve FPR 8 through FPR 15 if they are

altered by the function.
v For AMODE 31 functions: The compiler will generate code to preserve the high

halves of the 64-bit GPRs if they are altered or if there are user-embedded
assembly statements.

v The addressing mode is determined by the compiler option. When the compiler
option LP64 is in effect, the addressing mode is AMODE 64; otherwise it is
AMODE 31.

Structure of a compiler-generated HLASM source program
Each compiler-generated HLASM source program has the following elements:
v File-scope header
v For each function:

– A function header
– A function entry point marker
– A function property block (FPB)
– A function body
– A function trailer

v File-scope trailer

File-scope header

Statements in the file-scope header apply to the entire compilation unit and might
have the following statements:
v TITLE statement to specify the product information of the compiler and the

source file being compiled.

Chapter 1. About IBM z/OS Metal C 5

v ALIAS/EXTRN statement to declare the external symbols that are referenced in
the program, if the LONGNAME compiler option is in effect.

v CSECT statement to identify the relocatable control section in the program.
v AMODE statement to specify the addressing mode.
v RMODE statement to specify the residency mode for running the module.
v Assembly statements to declare the HLASM global SET symbols used by the

compiler-generated code for communicating information to the user-embedded
prolog and epilog code, if the compiler detects user-embedded prolog and epilog
code.

v SYSSTATE ARCHLVL statement, which identifies the minimum hardware
requirement. SYSSTATE ARCHLVL=3, if and only if ARCH(7) or up and
OSREL(ZOSV2R1) or higher are in effect; otherwise, SYSSTATE ARCHLVL=2.

v IEABRCX DEFINE statement ensures that all branch instructions are changed to
relative-branching instructions, in the event that the XL C compiler encounters
user-embedded assembly statements.

v Prefix data to embed a compiler signature and to record attributes about the
compilation. See “Prefix data” on page 10 for details.

Function header

The function header might have the following statements or code:
v ALIAS/ENTRY statement to define the entry point by associating its C symbol

with the generated HLASM name, if the LONGNAME compiler option is in
effect.

v Assembly statements to set the values for the declared HLASM global SET
symbols, if the compiler detects user-embedded prolog and epilog code.

v Prolog code, which might be either the default prolog code generated by the
compiler or user-embedded prolog code.

Function entry point marker

A function entry point marker is generated immediately before the entry point of
each function. The function entry point marker is an 8-byte field containing the
signature 0x00C300C300D501nn. Immediately following the marker is a 4-byte signed
offset from the start of the entry point marker to the function property block
belonging to the current function. Figure 1 shows what a function entry point
marker looks like in generated assembler code.

Function property block

The function property block (FPB) is made up of a fixed part (20 bytes in size)
followed by a contiguous optional part, with the presence of optional fields
indicated by flag bits. Optional fields, if present, are stored immediately following
the fixed part of the FPB aligned on fullword boundaries in the order specified
below.

ENTRY @@CCN@2 000005
@@CCN@2 AMODE 31 000005

DC XL8’00C300C300D50100’ Function entry point marker 000005
DC A(@@FPB@1-*+8) Signed offset to FPB 000005
DC XL4’00000000’ Reserved 000005

@@CCN@2 DS 0F

Figure 1. Function entry point marker in generated assembler code

6 z/OS V2R1.0 Metal C Programming Guide and Reference

Figure 2 shows the FPB fixed area fields and the definitions.

Eyecatcher
A 16-bit field that is set to 0xCCD5.

Saved GPR Mask
A 16-bit mask, indicating which registers are saved and restored by the
associated routine. Bit 0 indicates register 0, followed by bits for registers 1
to 15 in order.

Signed offset to Prefix Data from the start of FPB
The offset of the prefix data belonging to the compilation unit containing
the function described by this FPB.

Flag Set 1

Flag definition

'1.......' Function is AMODE 64.

'0.......' Function is AMODE 31.

'.1......' Function is AR mode.

'.0......' Function is primary mode.

'..00000.'
Reserved.

'.......1' A vararg function.

'.......0' Not a vararg function.

Flag Set 2

Flag definition

'1.......' External function.

'0.......' Internal function.

'......00' This function has the standard 72-byte save area.

'......01' This function has the F4SA 144-byte save area.

'......10' This function has the F7SA 216-byte save area.

'.00000..'
Reserved.

Flag Set 3

Flag definition

X'CCD5' Eyecatcher Saved GPR Mask

Signed offset to Prefix Data from the start of FPB

Flag Set 1 Flag Set 2 Flag Set 3 Flag Set 4

X'00000000' Reserved

X'00000000' Reserved

+12
0xC

+0

+4

+8

+16
0x10

Figure 2. Function property block fixed area fields

Chapter 1. About IBM z/OS Metal C 7

'1.......' Indicates the floating-point registers (FPR) are saved in the DSA
and the FPR mask and offset to the FPR save area are present in
the optional part of the FPB.

'0.......' Indicates the floating-point registers (FPR) are not saved in the
DSA.

'.1......' Indicates the high-half of 64-bit general purpose registers (GPR) are
saved in the DSA and the HGPR mask and offset to the HGPR
save area are present in the optional part of the FPB.

'.0......' Indicates the high-half of 64-bit general purpose registers (GPR) are
not saved in the DSA.

'..000000'
Reserved.

Flag Set 4

Flag definition

'0000000.'
Reserved.

'.......1' Indicates that the length of the function name and the function
name field are present in the optional part of the FPB.

'.......0' Indicates that the function name field is not present in the FPB.

Note: When the COMPRESS compiler option is in effect, the
function name field is not present in the FPB.

There are several optional FPB fields. The presence of each field is indicated by a
flag bit in FPB flag set 3 or FPB flag set 4. When an optional field is less than 4
bytes in length, the entire word is present if any of the fields in that word are
present. Unused parts of the word are filled with zeroes. The optional fields are
fullword aligned and appear in the order listed below.

FPR Mask
A 16-bit mask indicating which of floating-point registers (FPR) are saved
and restored by this function. Bit 0 indicates FPR0, followed by bits for
FPR1 to FPR 15.

HGPR Mask
A 16-bit mask indicating which of 64-bit general purposes registers (GPR)
whose high-words are saved and restored by this function. Bit 0 indicates
GPR0, followed by bits for GPR1 to GPR 15.

Note: If either bit 0 or bit 1 of flag set 3 is on, the fullword variable representing
FPR mask and HGPR mask is present.

FPR Savearea Offset
A 32-bit field containing the offset from the start of the DSA to the FPR

FPR Mask (Flag Set 3 Bit 0) HGPR Mask (Flag Set 3 Bit 1) Length = 4

FPR Savearea Offset (Flag Set 3 Bit 0) Length = 4

8 z/OS V2R1.0 Metal C Programming Guide and Reference

save area. The contents of the FPRs indicated by the FPR Mask are stored
contiguously from the beginning of the FPR save area regardless of the
register number. For example, if the FPR Mask contains 0x00A0 and the
FPR save area offset contains 0x100, FPR8 is stored at R13+0x100 and
FPR10 is stored at R13+0x108.

HGPR Savearea Offset
A 32-bit field containing the offset from the start of the DSA to the HGPR
save area. The HGPR save area is 64-byte in size which holds 16 32-bit
high-words. The order of the high-words stored in the save area is GPR14,
GPR15, and GPR0 - GPR13. Only the slots which correspond to the bits in
the HGPR Mask contain the saved high-word contents.

Name of Function
The optional function name fields start with a 2-byte length field which
contains the actual length of the function name that follows.

Figure 3 shows what a function property block looks like in generated assembler
code.

In this example, the @@FPB@ LOCTR instruction tells the assembler to group all
FPBs separate from the code and data generated for the functions.

Function trailer

The function trailer might include the following statements and code:
v DROP statement to clear all established base registers.

HGPR Savearea Offset (Flag Set 3 Bit 1) Length = 4

Name of Function (continue)
Variable Length

Length of Name (Flag Set 4 Bit 7) Name of Function

@@FPB@ LOCTR
@@FPB@1 DS 0F Function Property Block 000000

DC XL2’CCD5’ Eyecatcher 000000
DC BL2’1111100000000011’ Saved GPR Mask 000000
DC A(@@PFD@@-@@FPB@1) Signed Offset to Prefix Data 000000
DC BL1’00000000’ Flag Set 1 000000
DC BL1’10000000’ Flag Set 2 000000
DC BL1’01000000’ Flag Set 3 000000
DC BL1’00000001’ Flag Set 4 000000
DC XL4’00000000’ Reserved 000000
DC XL4’00000000’ Reserved 000000
DC XL2’0000’ Saved FPR Mask 000000
DC BL2’1111000000000011’ Saved HGPR Mask 000000
DC XL4’00000058’ HGPR Save Area Offset 000000
DC AL2(4) 000000
DC C’main’

Figure 3. Function property block in generated assembler code

Chapter 1. About IBM z/OS Metal C 9

v Epilog code, which might be either the default epilog code generated by the
compiler or user-embedded epilog code.

v LTORG statement to instruct the assembler to group all literals at that point in
the code.

v DSECT statement that provides a map for the automatic variables.
v DSECT statement that provides a map for the parameters.

File-scope trailer

The file-scope trailer might have the following statements or areas:
v DC statements to define static variables with their initial values.
v DSECT statement to provide a map for the static variables.
v DC statements that define constants.
v ALIAS/ENTRY statement to define all external variables with their initial values.
v END statement to specify compiler product information and the compilation

date.

Prefix data

Prefix data is generated to supply a signature, the timestamp of the compilation
date, the compiler version, and some control flags. It is placed at the beginning of
the code that follows an instruction for branching around the prefix data.

Note: Program code should reference ENTRY rather than CSECT to avoid
unnecessary branching.

The prefix data consists of a fixed part (36 bytes in size) followed by a contiguous
optional part, with the presence of optional fields indicated by flag bits in flag set
4. Optional fields, if present, are stored immediately following the fixed part of the
prefix data aligned on halfword boundaries in the order specified by the left to
right bits in flag set 4.

Figure 4 shows the prefix data fixed area fields and definitions.

X'00C300C300D50000'

Compile Date in YYYYMMDD format

Compile Time in HHMMSS format

Signature

+0

+4

+8

Compiler Version

Compiler Version (continue) X'0000' Reserved

Flag Set 1

X'00000000' Reserved

Flag Set 2 Flag Set 3 Flag Set 4

+12
0xC

+16
0x10

+20
0x14

+24
0x18

+32
0x20

+28
0x1C

Figure 4. Prefix data fixed area fields

10 z/OS V2R1.0 Metal C Programming Guide and Reference

Signature
An 8-byte field that is set to 0x00C300C300D50000. The last byte in the
signature is the version number which can change in future releases.

Compile date
An 8-byte field that contains the date of the compile in YYYYMMDD
format.

Compile time
A 6-byte field that contains the time of the compile in HHMMSS format.

Compiler version
A 4-byte field that contains the binary value of the compiler version and
release.

Flag Set 1

Flag definition

'.1......' Compiled with RENT option.

'.0......' Compiled with NORENT option.

'0.000000'
Reserved.

Flag Set 2

Flag definition

'00000000'
Reserved.

Flag Set 3

Flag definition

'00000000'
Reserved.

Flag Set 4

Flag definition

'1.......' Indicates the presence of a user comment string.

'0.......' Indicates no optional user comment string.

'.1......' Indicates the presence of a service string.

'.0......' Indicates no service string.

'..000000'
Reserved.

There are two optional prefix data fields, whose presence is indicated by a flag bit
in flag set 4.

User Comment String: The user comment string comes from the string specified
in both or one of #pragma comment(copyright, "...") and #pragma comment(user,
"..."). If you have either or both #pragma, the flag bit is set to one, and the user

Variable Length
Length of User Comment (Bit 0) User Comment String

User Comment String (continue)

Chapter 1. About IBM z/OS Metal C 11

comment string contains the concatenated strings from multiple #pragma.

Service String: The service string comes from the string specified in the SERVICE
compiler option.

Figure 5 and Figure 6 show how prefix data is generated from a sample program
compiled with the RENT and SERVICE (“Service String”) options.

Prolog and epilog code
The primary functions of prolog code are:
v To save the calling function’s general-purpose registers in the calling function’s

save area.
v To obtain the dynamic storage area for this function.
v To chain this function’s save area to the calling function’s save area, in

accordance with the MVS linkage convention.

The primary functions of epilog code are:
v To relinquish this function’s dynamic storage area.
v To restore the calling function’s general-purpose registers.
v To return control to the calling function.

Note: AR-mode functions require additional prolog and epilog functions. See
“AR-mode programming support” on page 35 for details.

Variable Length
Length of Service String (Bit 1) Service String

Service String (continue)

#pragma comment(copyright,"copyright comment")
#pragma comment(user,"user comment")
int main(){

return 0;
}

Figure 5. A sample program to generate prefix data

@@PFD@@ DC XL8’00C300C300D50000’ Prefix Data Marker 000008
DC CL8’20101007’ Compiled Date YYYYMMDD 000008
DC CL6’153745’ Compiled Time HHMMSS 000008
DC XL4’410D0000’ Compiler Version 000008
DC XL2’0000’ 000008
DC BL1’01000000’ Flag Set 1 000008
DC BL1’00000000’ Flag Set 2 000008
DC BL1’00000000’ Flag Set 3 000008
DC BL1’11000000’ Flag Set 4 000008
DC XL4’00000000’ 000008
DS 0H 000008
DC AL2(30) 000008
DC C’copyright comment user comment’ 000008
DS 0H 000008
DC AL2(14) 000008
DC C’Service String’ 000008

Figure 6. Prefix data generated

12 z/OS V2R1.0 Metal C Programming Guide and Reference

Supplying your own prolog and epilog code
If you need the prolog and epilog code to provide additional functionality, you can
use #pragma directives to instruct the compiler to use your own HLASM prolog
and epilog code. Figure 7 provides an example.

To apply the same prolog and epilog code to all your functions in the C source file,
use the PROLOG and EPILOG compiler options. When you use the PROLOG and
EPILOG compiler options, by default, your prolog and epilog code is applied only
to the functions that have external linkage. To apply your prolog and epilog code
to all functions defined in the compilation unit, use the new "all" suboption
provided by z/OS V1R11 XL C compiler. For detailed information, see PROLOG
and EPILOG options in z/OS XL C/C++ User's Guide.

The string you supplied to the PROLOG/EPILOG options or the #pragma
directives must contain valid HLASM statements. The compiler does not validate
the content of the string but it does take care of some formatting for you:
v If your string contains only a macro name, as shown in Figure 7, you do not

need to supply leading blanks.
v If the length of your HLASM statement exceeds 71 characters, you do not need

to break it into multiple lines. The compiler will handle that for you.

Your prolog code needs to ensure that:
v The primary functions of the prolog code have been performed.
v Extra DSA space is acquired, in the event that the NAB is needed for the

referenced functions.
v Upon exit of your prolog code:

– GPR 13 points at the DSA for this function.
– GPR 1 points at the parameter list supplied by the calling function.

Your epilog code needs to ensure that:
v The primary functions of the epilog code have been performed.
v The content of GPR 15, on entry to your epilog code, is preserved.
v If a 64-bit integer value is returned from an AMODE 31 program, the low half of

the return value contained in GPR 0 is preserved.

Your prolog and epilog code does not need to perform the following functions:
v Preserve the calling function’s floating-point registers.
v Preserve the high-halves of 64-bit general purpose registers in AMODE 31

functions.
v Preserve the registers used by the compiler generated code.
v Set up the NAB for the called functions.

User reserved DSA space

User reserved DSA space can be enabled by using the compiler option DSAUSER.
When using this compiler option, a user field with the size of a pointer is reserved

#pragma prolog(foo,"MYPROLOG")
#pragma epilog(foo,"MYEPILOG")
int foo() {

return 0;
}

Figure 7. Specification of your own prolog and epilog code for a function

Chapter 1. About IBM z/OS Metal C 13

on the stack. This user field can be utilized by your prolog or epilog code. The
user field can be located by the HLASM global set symbol &CCN_DSAUSER,
which provides the offset to the user field. The compiler allocates the field on the
stack only, without initializing it.

The following example shows how &CCN_DSAUSER is set by the compiler:
&CCN_DSAUSER SETC ’#USER_2-@@AUTO@2’

The following example shows how &CCN_DSAUSER can be used in your prolog
code:
STG 0,&CCN_DSAUSER.(,13)

For detailed information about the DSAUSER compiler option, see the topic about
DSAUSER and NODSAUSER in z/OS XL C/C++ User's Guide.

Compiler-generated global SET symbols
When you supply your prolog and epilog code, the compiler generates the
assembly instructions that set up global SET symbols for communicating
compiler-collected information to your prolog and epilog code. Your prolog and
epilog code can use this information to determine the code sequence generated by
your macros.

Table 2 describes global SET symbols defined by the compiler.

Table 2. Compiler-generated global SET symbols

Global SET symbol Type Description

&CCN_DSASZ Arithmetic The size of the dynamic storage area for the function.

&CCN_ SASZ Arithmetic The size of the function save area:

v 72 = standard format

v 144 = F4SA format

v 216 = F7SA format

&CCN_ARGS Arithmetic The number of fixed arguments expected by the function.

&CCN_RLOW Arithmetic The starting register number to be used in the STORE MULTIPLE
instruction for saving the registers of callers if the compiler were to
generate that instruction itself.

&CCN_RHIGH Arithmetic The ending register number to be used in the STORE MULTIPLE
instruction for saving the registers of callers.

&CCN_LP64 Logical Set to "1" if the LP64 compiler option is specified.

&CCN_NAB Logical Set to "1" when there are called programs that depend on the dynamic
storage to be pre-allocated. In this case, the prolog code needs to add a
generous amount to the size set in &CCN_DSASZ when the dynamic
storage is obtained.

&CCN_ALTGPR(16) Logical The array representing the general purpose registers. Subscript 1
represents GPR 0 and subscript 16 represents GPR 15. A subscript is set
to "1" whenever the corresponding register is altered by the
compiler-generated code.

&CCN_STATIC Logical Set to "1" if the function is static.

&CCN_MAIN Logical Set to "1" if this is function "main".

&CCN_RENT Logical Set to "1" if the RENT compiler option is specified.

&CCN_PRCN Character The symbol representing the function.

&CCN_CSECT Character The symbol representing the CSECT in effect.

14 z/OS V2R1.0 Metal C Programming Guide and Reference

Table 2. Compiler-generated global SET symbols (continued)

Global SET symbol Type Description

&CCN_DSAUSER Character The assembly time computed offset to the user field on the function
stack.

&CCN_LITN Character The symbol representing the LTORG generated by the compiler.

&CCN_BEGIN Character The symbol representing the first executable instruction of the function
generated by the compiler.

&CCN_ARCHLVL Character The symbol representing the architecture level specified in the ARCH
option.

&CCN_ASCM Character The ASC mode of the function:

v A=AR mode

v P=Primary mode

For information about AR mode, see “AR-mode programming support”
on page 35.

&CCN_NAB_OFFSET Character The assembly time computed offset to the NAB pointer on the stack of
the function.

The following example shows how &CCN_NAB_OFFSET is set by the
compiler:

&CCN_NAB_OFFSET SETC’#NAB_2-@@AUTO@2’

The following example shows how &CCN_NAB_OFFSET can be used in
the prolog code:

STG 0,&CCN_NAB_OFFSET.(,13)

&CCN_IASM_MACRO Character The name of the in-stream macro that contains all the #pragma
insert_asm supplied statements. The setting of &CCN_IASM_MACRO
only happens in the presence of inserted assembler statements provided
by #pragma insert_asm directives. In the presence of such directives, the
compiler generates an in-stream HLASM MACRO like this:

MACRO
@@IASM@

*from #pragma insert_asm #1 000004
*from #pragma insert_asm #2 000006
*from #pragma insert_asm #3 000008

MEND

The following example shows how &CCN_IASM_MACRO is set by the
compiler:

&CCN_IASM_MACRO SETC ’@@IASM@’

The MACRO name in &CCN_IASM_MACRO can be placed anywhere
within the prolog/epilog code.

&CCN_PRCN_LONG Character The actual function name up to the 1024 character HLASM limit. The
setting of &CCN_PRCN_LONG is subject to the HLASM limit of 1024
characters on a SETC instruction. When the function name is longer than
1024 characters, the character value set will be truncated to 1021
characters and appended with '...'.

Table 3 on page 16 describes the global SET symbols that can be set by your prolog
and epilog code to conditionally enable or disable code sequences generated by the
compiler.

Chapter 1. About IBM z/OS Metal C 15

Table 3. User modifiable global SET symbols

Global SET symbol Type Default Description

&CCN_SASIG Logical 1 Set to "1" to enable the save area signature generation. Set to
"0" to disable the save area signature generation.

&CCN_NAB_STORED Logical 0 Set to "1" to indicate that NAB pointer storing code was done
in the prolog code. The following example shows the code
that is generated by the compiler to cause the NAB computing
and storing code to be conditionally assembled based on the
setting of &CCN_NAB_STORED:

AIF (&CCN_NAB_STORED).@@NONAB2
LGHI 0,160
ALGR 0,13
STG 0,#NAB_2-@@AUTO@2(,13)

.@@NONAB2 ANOP

&CCN_IASM_FRONT Logical 0 Set to "1" to indicate that &CCN_IASM_MACRO was already
called. The following example shows the code that is
generated by the compiler to cause the &CCN_IASM_MACRO
to be conditionally assembled based on the setting of
&CCN_IASM_STORE:

AIF (&CCN_IASM_FRONT).@@NOIASM1
@@IASM@

.@@NOIASM1 ANOP

&CCN_WSA_INIT Character 'CCNZWSAI'
for 31-bit
'CCNZQWSI'
for 64-bit

Function name for WSA initialization routine.

&CCN_WSA_TERM Character 'CCNZWSAT'
for 31-bit
'CCNZQWST'
for 64-bit

Function name for WSA termination routine.

&CCN_APARSE Logical 1 Set to "1" to trigger CCNZINIT call to parse argc and argv.

Set to "0" to disable argc and argv parsing.

SCCNSAM(CCNZGBL) macro
Sample macros for prolog and epilog code are supplied in the SCCNSAM data set.
The SCCNSAM(CCNZGBL) macro contains assembler instructions to declare all
the Global Set Symbols to be referenced. You need to copy the CCNZGBL macro
into your prolog and epilog code. Figure 8 shows the sample CCNZGBL macro.

**
* *
* MACRO-NAME = CCNZGBL *
* DESCRIPTIVE-NAME = METAL C GLOBAL SET SYMBOLS *
* *
* USAGE = COPY CCNZGBL *
* *
**

GBLA &CCN_DSASZ DSA size of the function
GBLA &CCN_SASZ Save area size of this function
GBLA &CCN_ARGS Number of fixed parameters
GBLA &CCN_RLOW High GPR on STM/STMG
GBLA &CCN_RHIGH Low GPR on STM/STMG
GBLB &CCN_MAIN True if function is main

Figure 8. SCCNSAM(CCNZGBL)

16 z/OS V2R1.0 Metal C Programming Guide and Reference

GBLB &CCN_LP64 True if compiled with LP64
GBLB &CCN_NAB True if NAB needed
.* &CCN_NAB is to indicate if there are called functions that depend on
.* stack space being pre-allocated. When &CCN_NAB is true you’ll need
.* to add a generous amount to the size set in &CCN_DSASZ when you
.* otbain the stack space.
GBLB &CCN_ALTGPR(16) Altered GPRs by the function
GBLB &CCN_SASIG True to gen savearea signature
GBLC &CCN_PRCN Entry symbol of the function
GBLC &CCN_CSECT CSECT name of the file
GBLC &CCN_LITN Symbol name for LTORG
GBLC &CCN_BEGIN Symbol name for function body
GBLC &CCN_ARCHLVL n in ARCH(n) option
GBLC &CCN_ASCM A=AR mode P=Primary mode
GBLC &CCN_IASM_MACRO MACRO name for all insert_asm
GBLB &CCN_IASM_FRONT True if insert_asm at front
GBLC &CCN_NAB_OFFSET Offset to NAB pointer in DSA
GBLB &CCN_NAB_STORED True if NAB pointer stored
GBLC &CCN_PRCN_LONG Full func name up to 1024 chars
GBLB &CCN_STATIC True if function is static
GBLB &CCN_RENT True if compiled with RENT
GBLC &CCN_WSA_INIT WSA initialization function name
GBLC &CCN_WSA_TERM WSA termination function name
GBLB &CCN_APARSE True to parse OS PARM
GBLC &CCN_DSAUSER Offset to user field in DSA

SCCNSAM(MYPROLOG) macro
Sample macros for prolog code are supplied in the SCCNSAM data set. Figure 9 on
page 18 shows the sample prolog code.

Chapter 1. About IBM z/OS Metal C 17

MACRO
&NAME MYPROLOG

COPY CCNZGBL
LARL 15,&CCN_LITN
USING &CCN_LITN,15
GBLA &MY_DSASZ

&MY_DSASZ SETA 0
AIF (&CCN_LP64).LP64_1
STM 14,12,12(13)
AGO .NEXT_1

.LP64_1 ANOP
STMG 14,12,8(13)

.NEXT_1 ANOP
AIF (NOT &CCN_RENT).SKIP_R1
AIF (&CCN_LP64).LP64_11
LR 2,0
AGO .SKIP_R1

.LP64_11 ANOP
LGR 2,0

.SKIP_R1 ANOP
AIF (&CCN_DSASZ LE 0).DROP

&MY_DSASZ SETA &CCN_DSASZ
AIF (&CCN_DSASZ GT 32767).USELIT
AIF (&CCN_LP64).LP64_2
LHI 0,&CCN_DSASZ
AGO .NEXT_2

.LP64_2 ANOP
LGHI 0,&CCN_DSASZ
AGO .NEXT_2

.USELIT ANOP
AIF (&CCN_LP64).LP64_3
L 0,=F’&CCN_DSASZ’
AGO .NEXT_2

.LP64_3 ANOP
LGF 0,=F’&CCN_DSASZ’

SCCNSAM(MYPROLOG) (Part 1 of 2)

Figure 9. SCCNSAM(MYPROLOG)

18 z/OS V2R1.0 Metal C Programming Guide and Reference

.NEXT_2 AIF (NOT &CCN_NAB).GETDSA
&MY_DSASZ SETA &MY_DSASZ+1048576

LA 1,1
SLL 1,20
AIF (&CCN_LP64).LP64_4
AR 0,1
AGO .GETDSA

.LP64_4 ANOP
AGR 0,1

.GETDSA ANOP
STORAGE OBTAIN,LENGTH=(0),BNDRY=PAGE
AIF (&CCN_LP64).LP64_5
LR 15,1
ST 15,8(,13)
L 1,24(,13)
ST 13,4(,15)
LR 13,15
AGO .CHECK_R

.LP64_5 ANOP
LGR 15,1
STG 15,136(,13)
LG 1,32(,13)
STG 13,128(,15)
LGR 13,15

.CHECK_R ANOP
AIF (NOT &CCN_RENT).DROP
AIF (&CCN_LP64).LP64_12
LR 0,2
AGO .DROP

.LP64_12 ANOP
LGR 0,2

.DROP ANOP
DROP 15
MEND

SCCNSAM(MYPROLOG) (Part 2 of 2)

SCCNSAM(MYEPILOG) macro
Sample macros for epilog code are supplied in the SCCNSAM data set. Figure 10
on page 20 shows the sample epilog code.

Chapter 1. About IBM z/OS Metal C 19

Compiler-generated default prolog and epilog code
The default prolog and epilog code generated for the "main" function is very much
the same as the code produced by the sample prolog and epilog macros in Figure 9
on page 18 and Figure 10. That is, a STORAGE macro is used to obtain and release
a dynamic storage area of 1 MB. For functions other than "main", the prolog code
simply picks up its DSA pointer (the NAB pointer) from the "Address of next save
area" field in the calling function’s save area.

Supplying your own HLASM statements

Before you insert your own HLASM statements into your C source file, be aware
of the following information:

MACRO
&NAME MYEPILOG

COPY CCNZGBL
GBLA &MY_DSASZ
AIF (&MY_DSASZ EQ 0).NEXT_1
AIF (&CCN_LP64).LP64_1
LR 1,13
AGO .NEXT_1

.LP64_1 ANOP
LGR 1,13

.NEXT_1 ANOP
AIF (&CCN_LP64).LP64_2
L 13,4(,13)
AGO .NEXT_2

.LP64_2 ANOP
LG 13,128(,13)

.NEXT_2 ANOP
AIF (&MY_DSASZ EQ 0).NODSA
AIF (&CCN_LP64).LP64_3
ST 15,16(,13)
AGO .NEXT_3

.LP64_3 ANOP
STG 15,16(,13)

.NEXT_3 ANOP
LARL 15,&CCN_LITN
USING &CCN_LITN,15
STORAGE RELEASE,LENGTH=&MY_DSASZ,ADDR=(1)
DROP 15
AIF (&CCN_LP64).LP64_4
L 15,16(,13)
AGO .NEXT_4

.LP64_4 ANOP
LG 15,16(,13)

.NEXT_4 ANOP

.NODSA ANOP
AIF (&CCN_LP64).LP64_5
L 14,12(,13)
LM 1,12,24(13)
AGO .NEXT_5

.LP64_5 ANOP
LG 14,8(,13)
LMG 1,12,32(13)

.NEXT_5 ANOP
BR 14
MEND

Figure 10. SCCNSAM(MYEPILOG)

20 z/OS V2R1.0 Metal C Programming Guide and Reference

v The compiler does not recognize either the syntax or the semantics of the
HLASM statements embedded in the C __asm statement. You need to ensure that
the embedded HLASM statements:
– Meet the requirements of the assembly step that follows the compilation step.
– Function correctly when embedded in the compiler-generated HLASM source

file.
v In the HLASM syntax, the first field is the label field, followed by the op-code,

and the rest of the HLASM instruction. If there is no label field, you must leave
a blank space at the beginning of the string. Other than this, you can code the
rest of the HLASM instruction as you do in HLASM.

v You do not have to consider HLASM line-width requirements. You can code an
instruction in the code format string continuously, in accordance with the
limitation of the C source file. The C compiler breaks up a code format string
that exceeds 71 characters in the HLASM output, inserting continuation
characters as required.

Inserting HLASM instructions into the generated source code
You can use the __asm language extension to specify assembly instructions to be
embedded within the generated HLASM source code. For example, you can embed
assembly statements that invoke assembler macros to obtain system services.

Use the __asm statement only to embed a short sequence of assembler instructions
into a C function, to perform actions that cannot be done using C statements. If
you need to use a long routine, put the assembly statements into a source file,
assemble it separately, and then call the routine from the C program.

Note: The compiler supports a collection of hardware built-in functions, such as
__csg. These hardware built-in functions allow the compiler more freedom in
blending embedded assembly statements with the rest of the code. For this reason,
a hardware built-in function might be better than an __asm statement for
embedding the assembly instructions that you need.

In addition to the __asm language extension, there are language constructs for the
following purposes:
v Reserving a register for a global variable of the pointer type. See “Reserving a

register for a global variable” on page 30.
v Invoking a macro in the list form. See “Specifying and using the list form of a

macro” on page 28.
v Supplying your own function prologs and epilogs. See “Prolog and epilog code”

on page 12.

For information about hardware built-in functions, see Using hardware built-in
functions in z/OS XL C/C++ Programming Guide.

Using the __asm statement
For the complete __asm statement syntax, see Inline assembly statements in z/OS
XL C/C++ Language Reference.

Within the __asm statement, the code format string specifies the assembly statement
to be embedded in the compiler-generated HLASM source file. Figure 11 on page
22 provides an example of a simple code format string, enclosed in double
quotation marks, in an __asm statement.

Chapter 1. About IBM z/OS Metal C 21

Treatment of the code format string
The compiler treats the code format string in an __asm statement similarly to the
way the printf function treats a format string, with the following exception:
Instead of printing out the string during program execution, the compiler inserts it
after the generated sequence of assembly statements, before the END statement.

More than one assembler instruction can be put into the code format string. As
shown in Figure 12, each assembler statement must be separated by the new line
character '\n' (like the new line character that is used in a printf format string).

The example in Figure 12 will embed two " AR 1,2" instructions in the HLASM
source code. You can make the statement more readable by breaking the string into
two. In C, adjacent string literals are automatically concatenated and treated as
one. The sample code in Figure 12 and Figure 13 generate the same output.

Notes:

1. The character "\n" is still required to delimit statements.
2. The second statement also begins with a blank space.

C expressions as __asm operands
You can use substitution specifiers in a code format string just as you can in a
printf format string. The substitution specifier tells the compiler to substitute the
specified C expression into the corresponding __asm operand when it embeds the
assembly statement in the HLASM source code. You must ensure that the
substitution converts the code format string into a valid assembler instruction.

Note: In this document, operands used in a code format string are referred to as
__asm operands.

An embedded assembly statement can use any C-language expression that is in
scope as an __asm operand. The constraint tells the compiler what to do with the C
expression that follows it.

Substitution of a C variable into an __asm operand

Figure 14 on page 23 shows an __asm statement that substitutes a C variable into
an output __asm operand. Figure 15 on page 23 shows those assembly instructions.

void foo() {
__asm (" AR 1,2");

}

Figure 11. Simple code format string

void foo() {
__asm (" AR 1,2\n AR 1,2");

}

Figure 12. Code format string with two instructions

void foo() {
__asm (" AR 1,2\n" �1�

" AR 1,2"); �2�
}

Figure 13. Code format string with two instructions, formatted for readability

22 z/OS V2R1.0 Metal C Programming Guide and Reference

Notes:

1. A colon that marks the beginning of the list of output __asm operands, it
follows the code format string.

2. The output __asm operand is "=m"(x). The constraint "m" communicates the
syntactic requirement to the compiler:
v The symbol "=" means the (output) __asm operand will be modified.
v The letter "m" means that the output __asm operand is a memory operand.

3. The C expression is the variable x.
4. The compiler does not know that the embedded assembly instruction is ST, nor

does it know the HLASM syntactic requirement of the second ST operand.
5. The variable x is the first __asm operand in the example, and therefore

corresponds to %0 in the code format string.

From the __asm statement used in Figure 14, the compiler embeds the instructions
shown in Figure 15 in the generated HLASM source code.

Notes:

1. The LA instruction is inserted by the C compiler as a result of processing
the “=m”(x) __asm operand.

2. @3x is the HLASM symbol name that the compiler assigned to the local variable
x. Local C symbol names are mapped to HLASM symbol names so that each
local variable has a unique name in the HLASM source file.

3. 0(1) is substituted into "%0", which specified the first __asm operand in the
code format string in Figure 14 (ST 12,%0).

Substitution of a C pointer into an __asm operand

The code format string in Figure 16 on page 24 invokes the WTO macro by using
the execute form of the macro with a user-defined buffer.

In general, you do not control which registers are used during the operand
substitution, as illustrated in Figure 16 on page 24. For an example that allows you
to specify registers, see Figure 20 on page 26.

void foo() {
int x;

�1� �2� �3�
__asm (" ST 12,%0\n" : "=m"(x) :: "r12");

�4� �5�
}

Figure 14. Substitution of a C variable into an output __asm operand

�1� �2�
LA 1,@3x
ST 12,0(1)

�3�

Figure 15. HLASM source code embedded by the compiler

Chapter 1. About IBM z/OS Metal C 23

Notes:

1. The absence of a label necessitates that a blank space begin the code format
string.

2. There are no output __asm operands. The end of the output __asm operands list
is marked by a colon, which is then followed by a comma-separated list of
input __asm operands. The colon starting the list of input __asm operands is not
necessary if there are no input operands (which is the case in Figure 14 on page
23).

3. The input __asm operand consists of two components:
v A constraint "r" that tells the compiler that the operand will be stored in a

GPR.
v An expression (&wto_buff) that states that the operand is the address of the

message text in the C structure wto_buff.

Definition of multiple __asm operands

In Figure 17, the compiler is instructed to store the third defined C variable (z) in a
register, and then substitute that register into the third __asm operand %2.

Notes:

1. The code format string instructs the compiler to embed an assembly statement
that substitutes the register (with contents of the C variable z) into the third
__asm operand (%2).

2. The constraint "=m" instructs the compiler to use memory operands for the
output variables x and y.

3. The constraint "r" instructs the compiler to use a register for the input variable
z.

Figure 18 on page 25 shows the compiler-generated HLASM code from the __asm
statement in Figure 17. GPR 4 is assigned to the variable z.

int main() {
struct WTO_PARM {

unsigned short len;
unsigned short code;
char text[80];

} wto_buff = { 4+11, 0, "hello world" };

�1� �2� �3�
__asm(" WTO MF=(E,(%0)) " : : "r"(&wto_buff));
return 0;

}

Figure 16. Substitution of a C pointer into an __asm operand

void foo() {
int x, y, z;
__asm (" ST 12,%0\n"

" ST 12,%1\n"
" AR 12,%2" : "=m"(x), "=m"(y) : "r"(z) : "r12");

�1� �2� �3�
}

Figure 17. __asm operand lists

24 z/OS V2R1.0 Metal C Programming Guide and Reference

Notes:

1. The first assembly statement L 4,@5z is added by the compiler to get z into the
form specified by the input __asm operand constraint "r".

2. The next two instructions are added by the compiler to get the variables x and
y into the form specified by the output __asm operand constraints "=m".

3. The contents of the code format string are appended in the last three
instructions.

Register specification

In general you do not have control over which registers are used during operand
substitutions. The register assignment might change when you use different
options or optimization levels, or when the surrounding C code is changed.

In cases where you specify explicit registers to be used in the embedded
instructions, you should code a clobber list, as shown in Figure 20 on page 26.
Without the clobber list, the __asm statement embeds incorrect assembly
statements, as shown in Figure 19.

Note: The output and input __asm operand lists are positional. If there are no
output __asm operands, the colons separating the output and input operand list are
still needed. Because the compiler has no knowledge of assembly instructions and
does not understand the LR instruction, it does not know that the registers GPR 0
and GPR 1 are being used in the statement. Any connection between the __asm
statement and the rest of the C code must be specified via the __asm operand lists.
The information provided in the lists should prevent the compiler from incorrectly
moving the other references surrounding the __asm statement. In this example,
because the compiler doesn't know that GPR 0 and GPR 1 are being used, it will
embed incorrect assembly statements.

To prevent the compiler from incorrectly moving the other references surrounding
the __asm statement, add a clobber list after a colon that follows the input __asm
operands, as shown in Figure 20 on page 26.

Note: Do not try to use the __asm statement to embed a long piece of assembly
code with many operand specifiers and stringent register requirements. There is a
limited number of registers available for the compiler to use in the operand
specifiers, and in the surrounding code generation. If too many registers are
clobbered, there may not be enough registers left for the __asm statement. The same
applies if there are too many specifiers.

L 4,@5z �1�
LA 2,@4y �2�
LA 1,@3x
ST 12,0(1) �3�
ST 12,0(2)
AR 12,4

Figure 18. Compiler-generated HLASM code from the __asm statement

__asm (" LR 0,%0\n" /* load &pl */
" LR 1,%1\n" /* load &dcb */
" SVC 21"

: : "r"(&pl), "r"(&dcb)); �1�

Figure 19. Unsuccessful attempt to specify registers

Chapter 1. About IBM z/OS Metal C 25

Notes:

1. This colon is not needed if there is no clobber list.
2. The clobber list specifies the registers that can be modified by the assembly

instructions.

C expressions as read-write __asm operands
If you use the same __asm operand for both input and output, you must take care
that you tell the compiler that the input __asm operand refers to the same variable
as the corresponding output __asm operand. For example, the code format string in
Figure 21 uses one register to store a single __asm operand that is used for both
input and output.

Definition of __asm operands for both input and output via an operand
list

This topic describes how to use a code format string to define __asm operands that
can be used for both input and output.

You can use either input and output operand strings both incorrectly (Figure 21)
and correctly (Figure 23 on page 27). The code in Figure 21 is incorrect because the
AR statement reads the first operand and then modifies it, but the =r constraint
specifies the output aspect only.

Note: No input operand is specified for variable x. The compiler will not know
that input and output are stored in the same variable.

The compiler-generated HLASM source code in Figure 22 is the result of the
incorrect definition in Figure 21.

Note: GPR 4, which is meant for input as well as output, is not loaded from
variable x before the code format string is embedded because the code format
string in Figure 21 specified variable x as an output operand only.

If a code format string uses a single __asm operand for both input and output, you
must ensure that the embedded assembly statements will perform both of the
following tasks:
v Define the variable as an input operand as well as an output operand.

__asm (" LR 0,%0\n" /* load &pl */
" LR 1,%1\n" /* load &dcb */
" SVC 21"

: : "r"(&pl), "r"(&dcb) : “r0”,“r1”);
�1� �2�

Figure 20. Register specification with clobbers

__asm (" AR %0,%1" : "=r"(x) : "r"(y)); �1�

Figure 21. Incorrect __asm operand definition for both input and output

L 2,@4y �1�
LA 1,@3x
AR 4,2
ST 4,0(,1)

Figure 22. Incorrect compiler-generated HLASM source code from the incorrect __asm
operand definition for both input and output

26 z/OS V2R1.0 Metal C Programming Guide and Reference

v Define both an input operand and an output operand that refers to the same
variable. The variable name is not sufficient for this purpose. See Figure 23.

Figure 23 shows the code format string that will embed the correct assembler
statements (as shown in Figure 24).

Notes:

1. %0 is the first operand in the code format string.
2. This example has one output __asm operand, "=r"(x).
3. Within the input __asm operand list "r"(y), "0"(x), the __asm operands are

separated by a comma.
4. An input operand "0"(x) is added to the input field. The constraint of this

__asm operand is the ("0"), which tells the compiler that:
v This input __asm operand is the same as the output __asm operand %0. (A

numeral zero in the constraint ("0") refers to %0; a numeral one in a
constraint would refer to %1; and so on.)

v The register needs to be loaded with variable x, as shown in Figure 24, before
the code format string is embedded in the HLASM output.

The compiler-generated HLASM source code in Figure 24 is the result of the
correct definition in Figure 23.

Note: The compiler inserted L 4,@3x at the beginning of the instruction sequence
because the code format string in Figure 23 included both the output operand
"=r"(x) and the input operand "0"(x). Together, these statements tell the compiler
that the register for the first operand %0 will be used for variable x, which has a
value that can be either an input or an output operand.

Definition of an __asm operand for both input and output via the "+"
constraint

You can also use the "+" constraint to specify that an __asm operand is used for
both input and output.

In Figure 25 on page 28, the "+" constraint is used to define that the variable x is
used both as input and output.

__asm (" AR %0, %1" : "=r"(x) : "r"(y), "0"(x));
�1� �2� �3� �4�

Figure 23. Successful definition of an __asm operand for both input and output

L 2,@4y
L 4,@3x �1�
LA 1,@3x
AR 4,2
ST 4,0(,1)

Figure 24. Correct compiler-generated HLASM source code from the correct __asm operand
definition for both input and output

Chapter 1. About IBM z/OS Metal C 27

Note that an operand can be matched only once. When you use the "+" constraint
to implicitly define matching input and output __asm operands, do not explicitly
define a corresponding __asm operand.

Figure 26 shows an erroneous example of an __asm operand that is defined both
implicitly and explicitly. The notes identify the unnecessary code.

Specifying and using the list form of a macro
When you specify and use the list form of a macro, you can code for reentrancy by
embedding assembly statements that:
1. Allocate space on the stack (that is, use a local variable). See Figure 28 on page

29.
2. Copy the parameter field values from the list form to this allocated space.
3. Invoke the execute form of the macro that will use the allocated space.

Note: The code format string in Figure 16 on page 24 invokes the WTO macro by
using the execute form of the macro with a user-defined buffer. That example does
allow for reentrancy.

You should not have direct reference to symbols within your code format string as
the addressability is not guaranteed. The proper way to use the macro is shown in
Figure 28 on page 29, in which all __asm statements are connected through the C
variable operands listmsg1 and buff.

Figure 27 on page 29 provides an example that uses the list form of a macro
without considering reentrancy.

__asm (" AR %0, %1" : "+r"(x) : "r"(y));

Note: This example is parsed as though the operand list in Figure 23 on page 27 is given.

Figure 25. The + constraint to define an __asm operand for both input and output

__asm (" AR %0, %1" : "+r"(x) : "r"(y), “0”(x));
�1� �2� �3�

Notes:

1. %0 is the first operand in the code format string.

2. This example has one output __asm operand, "+r"(x). The "+" constraint implicitly
defines a matching input __asm operand.

3. You do not have to define __asm operand "0"(x) explicitly.

Figure 26. Error: Redundant definition of an __asm operand

28 z/OS V2R1.0 Metal C Programming Guide and Reference

Support of reentrancy requirements

If the execute form of the macro needs to change the fields provided in the list
form, the assembly statements embedded by the __asm statement in Figure 27 will
be incorrect when support for reentrancy is required. The proper way to use the
macro is shown in Figure 28.

�1� �2� �3�
__asm(" WTO ’hello world’,MF=L" : "DS"(listmsg1));

int main() {
�4� �5�
__asm(" WTO MF=(E,(%0)) " : : "r"(&listmsg1));
return 0;

}

Notes:

1. The first __asm statement invokes the macro WTO in the list form (MF=L). In order for the
list form of the macro to be invoked with the values of the parameter fields defined, the
__asm statement must be specified in the global scope.

2. The message text "hello world" is provided as a macro parameter.

3. The “DS” constraint indicates that this is a data definition, with the name of the C
variable defined as the variable listmsg1. Because listmsg1 is implicitly defined as a
structure, it can be referenced in subsequent __asm statements, therefore the “DS”
constraint must be specified in the output operand list. By default, the compiler allocates
256 bytes of memory for the variable listmsg1, which should satisfy most requirements.
You can change the memory allocation size (for example, "DS:100"(listmsg1) to allocate
100 bytes). You can allocate more than 256 bytes of space.

4. The second __asm statement invokes the macro WTO in the execute form (MF=(E,(%0)). It
takes the address of the storage defined in the list form.

5. The address of the variable listmsg1 is defined as an input operand that is stored in a
register.

Figure 27. Specifying and using the WTO macro (no reentrancy)

__asm(" WTO ’hello world’,MF=L" : "DS"(listmsg1)); �1�

int main() {
__asm(" WTO ’hello world’,MF=L" : "DS”(buff)); �2�
buff = listmsg1; �3�

__asm(" WTO MF=(E,(%0)) " : : "r"(&buff));
return 0;

}

Notes:

1. The first __asm statement uses the list form of the macro WTO to define the variable
listmsg1.

2. The second __asm statement, specified within function scope with a “DS” constraint, will
allocate stack space for the variable buff but will not actually initialize the parameter
values.

3. The size of this variable should match that of the corresponding __asm statement in
global scope. An assignment copies the actual parameter values from the list form to this
buffer.

Figure 28. Support for reentrancy in a code format string

Chapter 1. About IBM z/OS Metal C 29

Inserting non-executable HLASM statements into the generated
source code
You can use the #pragma insert_asm directive to supply your own non-executable
HLASM statements to the generated source code. The primary purpose of this
directive is that you can use it to include the DSECT mapping macros that are
required by your embedded assembly statements. The syntax is #pragma
insert_asm("string").

The #pragma insert_asm directive causes the compiler to insert string at an
appropriate place in the generated HLASM code. When you use multiple #pragma
insert_asm directives, they are placed in the same order as they appear in your C
source code.

Note: The #pragma insert_asm directive can be used with a _Pragma operator. If
you use the _Pragma operator, you must put a slash ("/") character before the
double quotation marks that surround the string literal. For example: _Pragma
("insert_asm(\"MYSTRING\")").

Example: Using the #pragma insert_asm directive to map specific
DSECT information

Figure 29 uses the #pragma insert_asm directive to get the system CVTUSER field
to address your specified CVT extension data. Because the CVTPTR and CVTUSER
fields are defined in the CVT mapping macro, you can use the #pragma insert_asm
directive to map specific DSECT information.

Reserving a register for a global variable
The register storage class specifier is the C-language extension that allows you to
specify, for the entire compilation unit, a general purpose register (GPR) for a
global variable, as shown in Figure 30 on page 31.

When you use a code format string to specify a GPR for a global variable, be
aware that:
v Only GPR 0 through GPR 15 can be specified for storage of a global variable.
v The variable must be declared as a pointer type.
v A declaration with register specifier cannot have an initializer.

For more information, see The register storage class specifier in z/OS XL C/C++
Language Reference.

void foo() {
void * user_cvt;
__asm(" L 2,CVTPTR\n"

" L 2,CVTUSER-CVT(2)\n"
" ST 2,%0"
:"m"(user_cvt)::"r2");

}
#pragma insert_asm(" CVT DSECT=YES,LIST=NO")

Figure 29. Code that supplies specific DSECT mapping macros

30 z/OS V2R1.0 Metal C Programming Guide and Reference

AMODE-switching support
Within a Metal C application, AMODE 31 and AMODE 64 programs can call each
other.

To take advantage of the Metal C AMODE-switching support, be aware of the
following information:
v The called and calling programs must be in separate source files. Mixing

addressing modes within a single C source file is not supported.
v The save area format for the called program is determined by the AMODE and

ASC mode of the called program, that is, 72-byte for AMODE 31 programs,
F4SA for AMODE 64 programs, F7SA for AR mode programs. The ability for
tracing the save areas chain will be interrupted across AMODE switches.

v The parameter list is prepared according to the AMODE of the called program,
that is, 4-byte slots for AMODE 31 programs and 8-byte slots for AMODE64
programs.

v It is the user's responsibility to ensure that all storage addresses passed to the
AMODE 31 functions are addressable by the AMODE 31 functions. Because the
save area and parameter lists are part of the caller's DSA, the caller must have
its DSA allocated in the below-the-bar storage.

v The AMODE of the called program can be specified by the new amode31 and
amode64 type attributes. For detailed information, see amode31 | amode64 type
attribute in z/OS XL C/C++ Language Reference.

v The calling program switches the addressing mode before the call and switches
back to its own addressing mode on return from the call.

v The implicit sizes of types long and pointer in the function prototype are
determined by the addressing mode of the called program.

v The __ptr64 qualifier can be used to specify a 64-bit pointer on an AMODE 31
program; the pointer cannot be dereferenced at the AMODE 31 program.

Example of an AMODE31 program that calls an AMODE64
program

In Figure 31 on page 32, AMODE 31 program "main" in a31.c makes calls to
AMODE 64 programs a64a1 and a64a2 in a64a.c. For the commands that compile
and link a31.c and a64a.c, see “Commands that compile and link applications that
switch addressing modes” on page 46.

�1� �2�
register int * p __asm("r5");

Notes:

1. The variable declaration int * p defines the variable as a pointer type.

2. The register "r5" is not initialized.

Figure 30. Register specification

Chapter 1. About IBM z/OS Metal C 31

RENT mode support
The RENT option supports constructed reentrancy for C programs with writable
static and external variables. This makes Metal C programs with writable static and
external variables to be reentrant so a program can be concurrently used by
multiple users. The writable static area (WSA) can be managed by user provided
routines. Using the RENT support, you can use Metal C as an alternative to
assembler, to write programs to run in CICS® environment. For information about
how the CICS API and the CICS XPI can be used in Metal C and for programming
examples, see Appendix B, “CICS programming interface examples,” on page 127.
The default of the RENT option is NORENT.

Note: The Metal C RENT support is independent of and different from the
NOMETAL RENT support. They should not be mixed.

Example
xlc -qMETAL -qRENT -S a.c �1�
as -mgoff a.s �2�
export _LD_SYSLIB="//’CBC.SCCNOBJ’" �3�
ld a.o

Notes:

1. Request Metal C RENT support.
2. The HLASM GOFF option is required to assemble the compiler generated code

for RENT.
3. It is necessary to add CBC.SCCNOBJ dataset to the binder SYSLIB for the

resolution of CCNZINIT and CCNZTERM.

Linkage convention

General Purpose Register 0 (GPR0) is used to pass the WSA address. The prolog
code you supplied needs to preserve the content of GPR0 on exit of the prolog
code. Programs compiled with RENT and NORENT can be mixed as long as the
NORENT programs do not call RENT programs.

Note: Global variables compiled with RENT and NORENT cannot have the same
name.

a31.c

long a64a1 (long j, int k, short s) __attribute__((amode64));
int a64a2 (long j, int k, short s) __attribute__((amode64));
int main () {

int a = 40;
return a64a1(99LL, a, 4) + a64a2(-120LL, -60, -18);

}

a64a.c

long a64a1 (long a, int b, short c) {
return -(a+b+c);

}

int a64a2 (long a, int b, short c) {
return -(a+b+c);

}

Figure 31. AMODE31 program that calls an AMODE64 program

32 z/OS V2R1.0 Metal C Programming Guide and Reference

Assembler code interface

The runtime RENT support is accomplished by additional calls generated for the
function "main" between the prolog/epilog code and the function code. The RENT
environment initialization and termination routines are called to establish and
terminate the dynamically allocated WSA storage with the static initialization data
applied. For the AMODE 31 "main" function, CCNZINIT and CCNZTERM are the
names of these routines. While for the AMODE 64 "main" function, CCNZQINI
and CCNZQTRM are the function names. For the simplicity of further references,
only the names of the 31-bit version are used. The actual WSA storage
management is done by user supplied plug-in routines called from CCNZINIT and
CCNZTERM. Two user modifiable Global Set Symbols, &CCN_WSA_INIT and
&CCN_WSA_TERM, can be used in the user supplied prolog code to set the user
supplied WSA initialization and termination function names. The AMODE of the
user supplied routines has to be the same as the AMODE of function "main".

Note: CCNZINIT, CCNZTERM, CCNZWSAI and CCNZWSAT require the stack
space to be supplied by function "main" prolog code. Both CCNZINIT and
CCNZTERM require NAB to be established by function "main". Also, CCNZINIT
and CCNZTERM assume stack space to be available for the WSA initialization and
termination functions. This arrangement is to ensure that the stack space used by
CCNZINIT and CCNZTERM as well as the WSA initialization and termination
routines is consistent with the stack space used by function "main". Allocating 1K
of extra stack space (in addition to the DSA size suggested by &CCN_DSASZ for
"main") by function "main" should be sufficient for AMODE 31. For AMODE 64,
the extra stack space is roughly doubled.

The following new Global Set Symbols are introduced for the RENT option.
v &CCN_MAIN
v &CCN_RENT
v &CCN_WSA_INIT
v &CCN_WSA_TERM

For detailed information about these new Global Set Symbols, see
“Compiler-generated global SET symbols” on page 14.

You can provide your own WSA initialization and termination routines by setting
these Global Set Symbols with the module names of your own routines. For
example:

GBLC &CCN_WSA_INIT
GBLC &CCN_WSA_TERM
&CCN_WSA_INIT SETC ’MYWSAI’
&CCN_WSA_TERM SETC ’MYWSAT’

Your own WSA initialization and termination routines can be object modules, load
modules, or program modules, and they need to be supplied to the binder's input.

The compiler generated code for "main" has the following kind of assembly
statements in it:
v For AMODE 31:

DC V(&CCN_WSA_INIT)
DC V(&CCN_WSA_TERM)

v For AMODE 64:
DC VD(&CCN_WSA_INIT)
DC VD(&CCN_WSA_TERM)

Chapter 1. About IBM z/OS Metal C 33

WSA initialization routine

Given the size of the WSA for the whole application and the image of the WSA
with initialization data applied, the WSA initialization routine you provided
dynamically allocate the WSA storage for the application and copy the WSA image
into it. The address of the allocated storage is returned which CCNZINIT saves it
on the function main's stack to be propagated to the rest of the application. You are
responsible for ensuring that the allocated storage is addressable to all parts of the
application. This particularly means if there are AMODE 31 parts in the
application, the WSA storage should not be allocated above the 2G bar if the
AMODE 31 parts need to access it. Also, the WSA storage has to be allocated in
the primary address space. WSA storage in data spaces is not supported.

The routine you provide is given an address of an area to store whatever extra
information you want to keep and pass to the WSA termination routine you
provided. The storage area size is the size of a pointer, that is, 4 bytes for AMODE
31, and 8 bytes for AMODE 64.

Function prototype:
typedef void * (init_func_t) (void * wsa_image_addr,
unsigned long wsa_size, void * *user_info_addr, unsigned int alignment);

Input parameters:

v wsa_image_addr - the address of the WSA image in the loaded program
object

v wsa_size - the total size of the application's WSA
v user_info_addr - the address of the CCNZINIT provided save area for

saving user information
v alignment - the minimum required alignment of the allocated WSA

storage. For example, "alignment=8" means double-word alignment.

Return value:
The address of the allocated and initialized WSA storage. The default is the
IBM supplied routine CCNZWSAI or CCNZQWSI, which allocates storage
for both AMODE 31 and AMODE 64 with the following macro:

STORAGE OBTAIN,LENGTH=(n),BNDRY=PAGE

WSA termination routine

This routine is called from CCNZTERM for the WSA termination and cleanup
process. It is passed in the address of the WSA storage allocated by the WSA
initialization routine. It is also given the same WSA size that was originally passed
to the WSA initialization routine.

Function prototype:
typedef void (term_func_t) (void * allocated_wsa_addr,
unsigned long wsa_size, void * user_info_addr);

Input parameters:

v allocated_wsa_addr - the address of the allocated WSA storage
v wsa_size - the total size of the application's WSA
v user_info_addr - the saved user information

Return value:
The default is the IBM supplied routine CCNZWSAT or CCNZQWST,
which frees the storage with the following macro:

STORAGE RELEASE,LENGTH=(n),ADDR=(m)

34 z/OS V2R1.0 Metal C Programming Guide and Reference

argc argv parsing support
If your main() function uses the standard argc and argv arguments, the Metal C
initialization routine is called to parse the raw parameter data received from the
hosting environment and to convert the parameter to the standard argc and argv
format. If your program is not invoked in the z/OS UNIX System Services (USS)
environment, you can use the ARGPARSE or NOARGPARSE options to determine
if the EXEC PARM needs to be further parsed into individual arguments; the EXEC
PARM has to be in this format: a halfword length field followed by a maximum of
100 characters where the length field contains a binary count of the number of
bytes in the PARM field. For more information about the ARGPARSE option, see
z/OS XL C/C++ User's Guide.

If your main() function uses argc and argv arguments and you do not want the
parsing to be performed, you can set the new Global Set Symbol &CCN_APARSE
to 0 in your prolog code to conditionally bypass the argument parsing. For
detailed information, see Table 3 on page 16.

AR-mode programming support
With the METAL option, an AR-mode function can access data stored in data
spaces by using the hardware access registers. For more information about
AR-mode, see z/OS MVS Programming: Assembler Services Guide, SA23-1368. A
non-AR-mode function is said to be in primary mode.

The following sections describe the compiler options, language constructs, and
built-in functions that support AR-mode programming.

AR-mode function declaration

You can declare a function to be an AR-mode function with the armode attribute.
The syntax is:

void armode_func() __attribute__((armode));

You can also use the ARMODE compiler option to declare that all functions in the
source program to be AR-mode functions. If you use the ARMODE compiler
option and you want to single out the functions in the source program to be
primary mode functions you can declare the function with the noarmode attribute.
The syntax is:

void nonarmode_func() __attribute__((noarmode));

Far pointer declaration, reference, and dereference

The ability to reference data stored in different data spaces is achieved through a C
language extension to pointer types called far pointer types. A far pointer type is
declared by adding the __far qualifier. The syntax is

int * __far my_far_pointer;

A far pointer can be declared in a function of any mode (AR mode or primary
mode). But only an AR-mode function can directly or indirectly dereference a far
pointer. In other words, only an AR-mode program can access data stored in data
spaces with far pointers.

Note: For an example of a simple dereference of a far pointer, see Figure 38 on
page 43.

Chapter 1. About IBM z/OS Metal C 35

Regardless of the mode of the function, a far pointer can be manipulated in the
following ways:
v It can be passed as a parameter.
v It can be received as a function return value.
v It can be compared with another pointer.
v It can be cast as another pointer type.
v It can be used in pointer arithmetic expressions.

A far pointer consists of ALET and an offset. Although an ALET is always 32 bits
in length, the size of a far pointer is twice the size of a regular pointer. The layout
of a far pointer in memory depends on the AMODE of the function:
v Under AMODE 31, a far pointer occupies eight bytes.

– The ALET occupies the first four bytes.
– The offset occupies the last four bytes.

v Under AMODE 64, a far pointer occupies 16 bytes.
– The first four bytes are unused.
– The ALET occupies the second four bytes.
– The offset occupies the last eight bytes.

This difference in pointer size is illustrated in Figure 32.

C language constructs and far pointers

Table 4 describes the effects of language constructs that might have special impact
on far pointers.

Table 4. Language constructs that may have special impact on far pointers

Language Construct Effect

Implicit or explicit cast from normal to far
pointer

Because the normal pointer is assumed to
point to primary address space, the ALET of
the far pointer is set to 0.

Explicit cast from far pointer to normal
pointer

The offset of the far pointer is extracted and
used to form the normal pointer. Unless the
ALET of the far pointer was 0, the normal
pointer is likely to be invalid.

Operators !=, == If either operand is a far pointer, the other
operand is implicitly cast to a far pointer
before the operands are compared. The
comparison is performed on both the ALET
and offset components of a far pointer.

alet addr

4-bytes 4-bytes

31-bit

unused alet addr

4-bytes 4-bytes 8-bytes

64-bit

Figure 32. Far pointer sizes under different addressing modes

36 z/OS V2R1.0 Metal C Programming Guide and Reference

Table 4. Language constructs that may have special impact on far pointers (continued)

Language Construct Effect

Operators <, <=, >, >= Only the offset of the far pointer is used in
the comparison. Unless the ALETs of the far
pointers were the same, the result might be
meaningless.

Compare to NULL Because of the implicit cast of NULL to a far
pointer, the != and == operators compare
both the ALET and the offset to zero. A test
of !(p>NULL) is not sufficient to ensure that
the ALET is also 0.

Pointer arithmetic The effects of pointer arithmetic are applied
to the offset component of a far pointer only.
The ALET component remains unchanged.

Address of Operator, operand of & The result is a normal pointer, except in the
following cases:

v If the operand of & is the result of an
indirection operator (*), the type of & is
the same as the operand of the indirection
operator.

v If the operand of & is the result of the
arrow operator (->, structure member
access), the type of & is the same as the
left operand of the arrow operator.

Implicit ALET association

In addition to explicitly specifying ALETs that use far pointers to access data in
data spaces, the compiler must associate those ALETs with all the memory
references contained in the AR-mode function.

In a non-AR-mode function, all variable references are to primary data space
(ALET 0). In an AR-mode function, the compiler manages access registers (ARs) so
that every memory reference uses an ALET associated with the variable type to
reach the appropriate data space. Table 5 lists the ALET associations for different
types of variables.

Table 5. Implicit ALET associations for AR-mode-function variables

Variable type Implied ALET

File-scope variable ALET 0 (primary data space)

Stack variables (function local variable) The ALET that is in AR 13 at the time of
function entry. This points to the stack
frame.

Parameters (function formal parameters) The ALET that is in AR 1 at the time of
function entry. This points to the parameter
list.

Data pointed to by regular pointers ALET 0 (primary data space).

Data pointed by far pointer ALET contained in far pointer.

Chapter 1. About IBM z/OS Metal C 37

Far pointer construction

The Metal C Runtime Library does not provide functions for allocating or
deallocating alternative data spaces. You can use the DSPSERV and ALESERV
HLASM macros to allocate space and obtain a valid ALET and offset. For an
example, see Figure 36 on page 40. For more information, see z/OS MVS
Programming: Assembler Services Guide, SA23-1368.

Built-in functions that manage far-pointer components

The compiler provides built-in functions for setting and getting the individual
components of far pointers. Whenever you use these built-in functions, you must:
v Define the macro _MI.BUILTN to "1".
v Include the header file builtins.h.

Figure 33 lists the constructors.

Figure 34 lists the extractors.

For information about ARMODE built-in functions, see Using hardware built-in
functions in z/OS XL C/C++ Programming Guide.

Library functions that manipulate data stored in data spaces

The XL C compiler provides far versions of some of the standard C string and
memory library functions. The far versions can be called by either AR-mode or
primary-mode functions. If these functions are called by an AR mode function, the
compiler will generate inline code for them.

Whenever you use these functions, you must:
v Define the macro _MI.BUILTN to "1".
v Include the header file builtins.h.

The semantics of these functions, listed in Figure 35 on page 39, are identical to the
standard version.

void * __far __set_far_ALET_offset(unsigned int alet, void * offset);
void * __far __set_far_ALET(unsigned int alet, void * __far offset); �1�
void * __far __set_far_offset(void * __far alet, void * offset); �2�

Notes:

1. The __set_far_ALET function does not modify the far-pointer parameter offset. It simply
uses it to provide the offset component of the far pointer being constructed. Its return
value is the constructed far pointer.

2. Similarly, the __set_far_offset function that uses the far-pointer parameter ALET is not
modified; it simply provides the ALET for the far pointer being constructed.

Figure 33. Built-in functions for setting far-pointer components

unsigned int __get_far_ALET(void * __far p);
void * __get_far_offset(void * __far p);

Figure 34. Built-in functions for getting far-pointer components

38 z/OS V2R1.0 Metal C Programming Guide and Reference

AR-mode function linkage conventions

AR mode functions follow the same linkage conventions as do primary-mode
functions, with the following additional requirements:
v Any function that calls an AR-mode function must supply the 54-word F7SA

save area for saving the access registers.
v The AR-mode function must preserve the calling function’s access registers.
v The AR-mode function is responsible for switching into AR mode on entry and

switching back to calling function’s ASC mode on exit.

Note: A primary-mode function does not switch the ASC mode when calling an
AR-mode function.

v An AR-mode function must switch to primary mode before calling a primary
mode function.

v A far pointer is passed and returned as a struct that is based on the layout for
the calling function’s AMODE.

Default prolog and epilog code for AR-mode functions

If the calling function is in non-AR mode, the DSA and parameter areas are
assumed to be located in the primary address space.

For AR-mode functions, the default prolog code generates additional instructions
that:
v Save the calling function’s access registers in the F7SA save area.
v Save the ASC mode of the calling function in the F7SA save area.
v Switch to AR mode.
v Prime AR 1 and AR 13 with LAE instructions.

For AR-mode functions, the default epilog code generates additional instructions
that:
v Restore the calling function’s access registers.
v Restore the ASC mode of the calling function.

Data space allocation and deallocation

Figure 36 on page 40 provides examples of routines for allocating and deallocating
data space.

void * __far __far_memcpy(void * __far s1, const void * __far s2, size_t n);
int __far_memcmp(const void * __far s1, const void * __far s2, size_t n);
void * __far __far_memset(void * __far s, int c, size_t n);
void * __far __far_memchr(const void * __far s, int c, size_t n);
char * __far __far_strcpy(char * __far s1, const char * __far s2); �See Note�
char * __far __far_strncpy(char * __far s1, const char * __far s2, size_t n);
int __far_strcmp(const char * __far s1, const char * __far s2);
int __far_strncmp(const char *__far s1, const char * __far s2, size_t n);
char * __far __far_strcat(char * __far s1, const char * __far s2);
char * __far __far_strncat(char * __far s1, const char * __far s2, size_t n);
char * __far __far_strchr(const char * __far s, int c);
char * __far __far_strrchr(const char * __far s, int c);
size_t __far_strlen(const char * __far s);

Note: For an example that illustrates the use of this function, see Figure 37 on page 42.

Figure 35. Library functions for use only in AR-mode functions

Chapter 1. About IBM z/OS Metal C 39

#define _MI_BUILTN 1
#include builtins.h
#include string.h

/***/
/* Allocation/Deallocation example routines */
/***/

int alloc_data_space(void * __far *ret, char dstok[8],
long size_blocks, char name[8])

{
__asm("DSPARMS DSPSERV MF=L\n" : "XL:DS:64"(DSPARMS));
__asm("ALPARMS ALESERV MF=L\n" : "XL:DS:16"(ALPARMS));
int res,res2;
struct _myparms /* To reduce number of operands to __asm */
{

unsigned origin; /* +0 */
unsigned blocks; /* +4 */
unsigned alet; /* +8 */
char name[8]; /* +12 */
char dstok[8]; /* +20 */

} myparms;

strncpy(myparms.name,name,8);
myparms.blocks = size_blocks;

__asm(
" DSPSERV CREATE,GENNAME=COND,NAME=12(%1),OUTNAME=12(%1),"
"STOKEN=20(%1),ORIGIN=0(%1),BLOCKS=(4(%1)),MF=(E,(%2))\n"
" ST 15,%0\n"
: "=m"(res)
: "a"(&myparms), "a"(&DSPARMS)
: "r0" , "r1", "r14", "r15");

if(res==0)
{

__asm(
" ALESERV ADD,STOKEN=20(%1),ALET=8(%1),MF=(E,(%2))\n"
" ST 15,%0\n"
: "=m"(res2) : "a"(&myparms), "a"(&ALPARMS) : "r0" , "r1", "r14", "r15");

if(res2!=0)
{

__asm(
" DSPSERV DELETE,STOKEN=20(%1),MF=(E,(%2))\n"
" ST 15,%0\n"
: "=m"(res2) : "a"(&myparms), "a"(&DSPARMS) : "r0" , "r1", "r14", "r15");
return -res2;

}
}
else
{

return res;
}

*ret = __set_far_ALET_offset(myparms.alet,(void *)myparms.origin);
strncpy(dstok,myparms.dstok,8);
strncpy(name,myparms.name,8);
return 0;

}

Allocation and deallocation routines (Part 1 of 3)

Figure 36. Allocation and deallocation routines

40 z/OS V2R1.0 Metal C Programming Guide and Reference

void * __far allocate_far(long size)
{

void * __far ret;

ret = NULL;
if(size > 0)
{

int blocks = (size+4095)/4096;
char name[8];
char dstok[8];
strncpy(name,"Z ",8); /* provide a prefix */
alloc_data_space(&ret, dstok, blocks, name);

}
return ret;

}

void delete_data_space(void * __far p, char dstok[8])
{

__asm("DSPARMS DSPSERV MF=L\n" : "XL:DS:64"(DSPARMS));
__asm("ALPARMS ALESERV MF=L\n" : "XL:DS:16"(ALPARMS));
int alet;

if(p!=NULL)
{

alet = __get_far_ALET(p);
__asm(
" ALESERV DELETE,ALET=0(%0),MF=(E,(%1))\n"
: : "a"(&alet), "a"(&ALPARMS) : "r0" , "r1", "r14", "r15");

__asm(
" DSPSERV DELETE,STOKEN=0(%0),MF=(E,(%1))\n"
: : "a"(dstok), "a"(&DSPARMS) : "r0" , "r1", "r14", "r15");
}

}

int get_data_space_token(void * __far p, char *dstok)
{

__asm("ALPARMS ALESERV MF=L\n" : "XL:DS:16"(ALPARMS));
unsigned alet;
int res;

if(p!=NULL)
{

alet = __get_far_ALET(p);
__asm(
" ALESERV EXTRACT,ALET=0(%1),STOKEN=0(%2),MF=(E,(%3))\n"
" ST 15,%0\n"
: "=m"(res) : "a"(&alet), "a"(dstok), "a"(&ALPARMS)

: "r0" , "r1", "r14", "r15");

return res;
}
return -1;

}

Allocation and deallocation routines (Part 2 of 3)

Chapter 1. About IBM z/OS Metal C 41

void * __far free_far(void * __far p)
{

int x;
void * __far ret;

if(p != NULL)
{

char dstok[8];
x = get_data_space_token(p,dstok);
if(x==0)
{

delete_data_space(p, dstok);
}

}
return NULL;

}

Allocation and deallocation routines (Part 3 of 3)

Copying a string pointer to a far pointer

Figure 37 provides an example of using a built-in function to copy a C string
pointer to a far pointer.

Far pointer dereference

The Metal C Runtime Library does not provide functions for allocating or
deallocating alternative data spaces. Figure 38 on page 43 provides an example of
code that dereferences a far pointer.

/***/
/* __far_strcpy example */
/***/

char *__far far_strcpy_example() __attribute__((armode));
char *__far far_strcpy_example()
{

char *__far far_string;
char * near_string;

near_string = "Hello World!\n";

far_string = allocate_far(1024);

__far_strcpy(far_string,near_string);

return far_string; /* Assume caller will free allocated data space */
}

Figure 37. Copying a C string pointer to a far pointer

42 z/OS V2R1.0 Metal C Programming Guide and Reference

Defining an alternative name for function "main"
When building a Metal C program, you might need to define an alternative entry
point name for function "main" while maintaining all the characteristics of
function"main".

For example, if you want to call your Metal C "main" function as "ANEWMAIN", you
can add the following directive in your source file where "main" is defined:
#pragma map(main, "ANEWMAIN")
void dosomething(char *);
int main(int argc, char *argv[]) {

int i;
for (i=1; i<argc; i++) {

dosomething(argv[i]);
}

return 0;
}

The entry point name in the generated prolog/epilog code will be ANEWMAIN. When
you link your program, you need to tell the binder that the entry point name is
ANEWMAIN. For example:
/bin/ld -o a.out a.o -e ANEWMAIN

Notes:

1. In your C program, you can have only one "main" function, whether it is called
"main" or otherwise. If you use IPA, IPA will terminate with an error message
issued when more than one "main" function is detected.

2. The mapped entry point name for function "main" is subject to the effect of the
LONGNAME option. If the NOLONGNAME option is in effect, the mapped
name will be truncated to maximum of 8 characters, and the name will be in
upper case, with "_" in the name converted to "@". For example, "a_newmain"
will become "A@NEWMAI".

/***/
/* Simple dereference example */
/***/

char get_ith_character(char *__far s, int i) __attribute__((armode));
char get_ith_character(char *__far s, int i)
{

return s[i];
}

int main()
{

char c;
char *__far far_string;

far_string = far_strcpy_example();

c = get_ith_character(far_string,1);

free_far(far_string);

return c;
}

Figure 38. Example of a simple dereference of a far pointer

Chapter 1. About IBM z/OS Metal C 43

Building Metal C programs
Because the Metal option produces the final code in HLASM source code format,
the build process needs to include an assembly step to produce the object files. The
build process is demonstrated in Figure 39. Note that the build process with IPA is
more elaborated. For more information, see “Building Metal C programs with IPA”
on page 48.

In summary, the C source file is sent to the C compiler, which generates the
assembler source file. The assembler source file is sent to the HLASM assembler,
which generates an object file and a listing.

Examples of building Metal C programs
A set of examples illustrates how to build a Metal C program by using either z/OS
UNIX System Services commands or MVS JCL procedures. In these examples:
v MYADD is the name of the entry point in the C program.
v The name of the C source file used to generate the HLASM source file is

mycode.c.
v The name of the HLASM source file is mycode.s if it is generated under z/OS

UNIX System Services.

C source

C compiler

asm
source

text deck
(object file)

HLASM

listing

Figure 39. Metal C application build process

44 z/OS V2R1.0 Metal C Programming Guide and Reference

v Under MVS, if the C source file is a data set, the compiler uses the C source file
name to form the name of the HLASM source file. The high-level qualifier is
replaced with the userid under which the compiler is running, and .ASM is
appended as the low-level qualifier.

C source file
Figure 40 shows a C source file mycode.c that can be used to generate an HLASM
source file. The name of the generated HLASM source file is mycode.s under z/OS
UNIX System Services.

Building Metal C programs using z/OS UNIX System Services
There are three steps for building a Metal C program under z/OS UNIX System
Services:
1. Use the xlc command to generate an HLASM source file.
2. Use the as command to generate the object file.
3. Use the ld command to generate the program.

Generating an HLASM source file using the xlc command

To generate an HLASM source file from a C source file, the xlc command must be
invoked with the -qmetal option and the -S flag.

Note: Without the -S flag, the xlc utility invokes the compiler with the OBJECT
option, which is in conflict with the METAL option. This causes the compiler to
emit a severe error message and stop processing.

The generated HLASM source file has the same name as the C source file with the
suffix derived from the ssuffix attribute in the xlc configuration file. The default
suffix is s, so in the examples in this section, the HLASM source file name is
mycode.s.

Generating an object file from the HLASM source using the z/OS UNIX
System Services as command

The generated object file does not have to be a z/OS UNIX file. The as command
can write the object file directly to an MVS data set, as shown in Figure 42 on page
46. The -o flag can be used to name the output file, where it can be a UNIX file or
an MVS data set.

int myadd(void) {
int a , b;
a = 1;
b = 2;
__asm(" AR %0,%1 "

: "=r"(a)
: "r"(b), "0"(a)

);
return a;

}

Figure 40. C source file (mycode.c) that builds a Metal C program

xlc -S -qmetal mycode.c

Figure 41. C compiler invocation to generate mycode.s

Chapter 1. About IBM z/OS Metal C 45

A successful assemble will produce mycode.o.

If the C source file was compiled with the LONGNAME compiler option, the
generated HLASM source file will contain symbols that are more than eight
characters in length. In that case, the HLASM GOFF option must be specified. Use
the as utility -m flag to specify HLASM options, as shown in Figure 43.

A successful assemble will produce mycodelong.o.

Creating a program with the z/OS UNIX System Services ld command

Use the ld command to link the object file produced by the as command into a
program. The program does not have to be a z/OS UNIX file. The ld utility can
write the program directly to a specified MVS data set.

Common ld command options that control the bind step are:
v -e to specify the entry point.
v -o to specify the name of the program created by the ld utility.
v -V to direct the binder listing to stdout.
v -b to specify other binder-specific options.

Note: If you compile your C source file with the LONGNAME option, you should
use -b case=mixed and the -e option must specify the entry point in its original
case, as shown in Figure 44.

A successful bind produces HLQ.LOAD(MYCODE) with entry point MYADD.

Commands that compile and link applications that switch addressing
modes

Figure 45 shows the commands that compile and link the programs in Figure 31 on
page 32.

Notes:

1. To generate an HLASM source file from a C source file, the xlc command must
be invoked with the -qmetal option and the -S flag.

as mycode.s

Figure 42. Command that invokes HLASM to assemble mycode.s

as -mgoff mycodelong.s

Figure 43. Command that compiles an HLASM source file containing symbols longer than
eight characters

ld -b case=mixed -e MYADD -o "//LOAD(mycode)" mycode.o

Figure 44. Command that binds mycode.o and produces a Metal C program in an MVS data
set

xlc -S -qmetal a31.c �1�
xlc -S -qmetal -q64 a64a.c �2�
as -a=a31.lst -mgoff a31.s �3�
as -a=a64a.lst -mgoff a64a.s �3�
ld -o a.out a31.o a64a.o -e MAIN �4�

Figure 45. Commands that compile and link programs with different addressing modes

46 z/OS V2R1.0 Metal C Programming Guide and Reference

2. The called program a64a.c is an external function in a separate source file.
3. The -mgoff command is used to compile an HLASM source file containing

symbols longer than eight characters.
4. The ld command links the object file produced by the as command into a

program. The -e command specifies the entry point.

Building Metal C programs using JCL
When you build Metal C programs using JCL, you cannot use standard JCL
procedures that combine the compilation step with the link step (or link and run
steps) because compiling Metal C programs produces HLASM source files that
must be assembled by HLASM before they can be linked.

After successful completion of the assembly step, you can use an appropriate
binder invocation JCL procedure to produce an program.

Note: Binder invocation JCL procedures are available in the CEE.SCEEPROC data
set.

Compilation of HLQ.SOURCE.C(MYCODE)

Assembly of HLQ.SOURCE.ASM(MYCODE)

Bind of HLQ.OBJ(MYCODE) into a Metal C program

Notes:

1. The program is written to SYSLMOD.

//PROC JCLLIB ORDER=(CBC.SCCNPRC)
//*--
//* Invoke METAL C compiler
//*--
//METALCMP EXEC EDCC,
// INFILE=’HLQ.SOURCE.C(MYCODE)’,
// OUTFILE=’HLQ.SOURCE.ASM(MYCODE),DISP=SHR’,
// CPARM=’METAL’

Figure 46. Job step that compiles HLQ.SOURCE.C(MYCODE)

//*--
//* ASSEMBLY STEP:
//*--
//ASM EXEC HLASMC
//SYSIN DD DSN=HLQ.SOURCE.ASM(MYCODE),DISP=SHR
//SYSLIN DD DSN=HLQ.OBJ(MYCODE),DISP=OLD

Figure 47. Assembly step of HLQ.SOURCE.ASM(MYCODE)

//*---
//* BIND STEP:
//*---
//BIND EXEC PGM=IEWL,
// PARM=’AMODE=31,MAP,CASE=MIXED’
//SYSLMOD DD DSNAME=HLQ.LOAD(MYCODE),DISP=SHR �1�
//SYSPRINT DD SYSOUT=*
//OBJECT DD DSN=HLQ.OBJ,DISP=SHR
//SYSLIN DD *

INCLUDE OBJECT(MYCODE)
ENTRY MYADD �2�

/*

Figure 48. Job step that binds the generated HLASM object into a program

Chapter 1. About IBM z/OS Metal C 47

2. The entry point can be specified using the ENTRY binder control statement.

Building Metal C programs with IPA
Starting with z/OS V1R13 XL C compiler, the IPA option can be used with the
METAL option. IPA is an optimization option that enables the compiler to find
more optimization opportunities to improve your application performance. For
more information about IPA, see the Using the IPA option section in z/OS XL
C/C++ Programming Guide and the IPA considerations section in z/OS XL C/C++
User's Guide.

You need to be aware of the following adjustments when invoking IPA for METAL.
v The LONGNAME option is in effect by default when IPA is specified.
v The IPA compile step only produces IPA object in the output file. Only

IPA(NOOBJECT) is allowed, which instructs IPA to stop the compile process
after the IPA object is produced. It does not produce HLASM source code, so the
GENASM option cannot be used.

v The output file from IPA link step is one single HLASM source file for the whole
program, and the GENASM option is required. There could be multiple
structures in the HLASM source program, one for each partition. Under USS, the
output HLASM source file resides in the directory where the IPA link took place.

C source

IPA compile

ASM
source

Text deck
(object file)

HLASM

Listing

C source

IPA compile

IPA link

IPA object IPA object

Figure 49. The process of building Metal C programs with IPA

48 z/OS V2R1.0 Metal C Programming Guide and Reference

The default output file name for USS is a.s. In BATCH mode, the output
HLASM source file goes in the dataset allocated to DD SYSLIN in the IPA link
step.

v At the IPA link phase, all external references must be resolved. For Metal C, IPA
does not attempt to convert external object modules or load modules into object
code for the inclusion in the IPA produced program. You need to provide the
same set of library data sets to both IPA link and the binder for symbol
resolution.

v If you specify the PROLOG and EPILOG compiler options to supply your own
prolog and epilog macros at compile time, the macros will only be applied to the
functions defined in the source file.

v If you have #pragma insert_asm in your source file, IPA will assume the strong
connection between the string provided by the pragma and the functions in the
source file. IPA will not move functions defined in that source file to anywhere
else.

v If you use global register variable or the RESERVE_REGS option during your
compile, IPA link will merge the registers specified in the compile steps and
apply the merged set of the originated compilation units to a partition.

v If you use the DSAUSER option in any of your compile steps, IPA link applies
the option to the entire program.

The following compiler options are not supported by METAL with IPA:
v DEBUG
v REPORT

The following IPA suboptions are not supported with the METAL option:
v ATTRIBUTE
v GONUM
v PDF suboptions

The following IPA control file directives are not supported with the METAL option:
v EXPORT
v NOEXPORTS

Example

The following example shows how to compile a Metal C program with IPA.

IPA compile phase:
xlc -qmetal -qipa -c x.c

xlc -qmetal -qipa -c y.c

The above commands produce x.o and y.o.

Notes:

1. The -c option indicates compile.
2. No HLASM output is generated.
3. The objects are IPA objects, which can only be used for IPA link.
4. LONGNAME is implicitly turned on.

IPA link phase:
xlc -qmetal -qipa -S x.o y.o

Chapter 1. About IBM z/OS Metal C 49

This command produces a.s.

Note: The structure of the compiler-generated HLASM source program is
similar to that described in “Structure of a compiler-generated HLASM
source program” on page 5, except that at IPA link there could be multiple
structures in the HLASM source program, one for each partition.

The rest of the build process is similar to building Metal C programs without IPA.
You need to add the assembly step to produce the object file from the IPA link
generated HLASM source file. You also need to supply the object file produced by
the assembler along with all other library data sets to the binder for producing the
final executable program.

Assembly phase:
as -mgoff a.s

This command produces a.o.

Note: The HLASM GOFF option must be specified because of the
LONGNAME compiler option requirement with IPA.

Bind/Link phase:
ld -b case=mixed -e main a.o

This command produces a.out.

Note: Because of the LONGNAME compiler option requirement with IPA,
you should use the -b case=mixed ld utility option and the -e option with
the entry point in its original case.

Generation of debugging information
When the NOMETAL (the default) and DEBUG compiler options are in effect, the
compiler either generates debugging information as a separate binary file in
DWARF format, or embeds debugging information within the object file in ISD
format. When the METAL and DEBUG compiler options are specified, debugging
information in both ADATA and DWARF format can be generated. The ADATA
debug format allows debugging of the generated HLASM source. The DWARF
debug format allows debugging of the original C source.

CDAASMC JCL procedure to generate debugging information

The as command is a z/OS UNIX System Services utility that invokes the HLASM
assembler and can produce debugging information in DWARF format. CDAASMC
is the JCL procedure provided with the XL C compiler to do the same thing in a
batch environment.

Note: If you wish to use the HLASM ASMLANGX debugging utility, you must
first assemble your source with the ADATA assembler option. The CDAASMC JCL
procedure allows you to generate both ADATA and DWARF debugging
information.

The cataloged CDAASMC JCL procedure invokes CDAHLASM.

50 z/OS V2R1.0 Metal C Programming Guide and Reference

Debugging information for the IDF debugger

The Interactive Debug Facility (IDF) is a symbolic debugging tool for assembly
language programs. It uses information from the load module file to determine the
locations of a program's control sections and external symbols.

Optionally, IDF can make use of additional information to help disassemble the
program. The additional information can be generated by specifying the assembler
TEST option and the linkage editor TEST option.

Note: The Linkage Editor TEST option can make the final load module file quite
large. If you prefer to suppress them, either omit the linkage editor TEST option or
specify the NOTEST option.

The Linkage Editor TEST option increases the size of the load module file, so do
not use it for production modules.

ADATA debugging information

The ASMLANGX utility extracts source level information from the ADATA
debugging information. The output is an extract file. Although you can create
extract files as sequential files, they are typically stored in a PDS.

The recommended format for the extract file is:
RECFM(VB) LRECL(1562) BLKSIZE(27998)

IDF debugger invocation
If you want to use an interactive utility to debug your program, invoke the IDF
debugger by performing the following steps:
1. Specify the problem load module and the extract file that contains the

debugging information by entering the following commands.
ALLOC FI (ASMLANGX) DS(’hlq.ASMLANGX’) SHR
TSOLIB ACT DS(’hlq.LOAD’)

2. Invoke IDF by entering the following command:
ASMIDF MYCODE

3. Press F9 to get the Program Source and Disassembly view.

//ASMLANGX EXEC PGM=ASMLANGX,REGION=4096K,
// PARM=’member (ASM LOUD ERROR’ �1�
//SYSADATA DD DISP=SHR,DSN=hlq..SYSADATA �2�
//ASMLANGX DD DISP=OLD,DSN=hlq..ASMLANGX �3�

Notes:

1. The PDS member name of the input and output file is passed as a parameter. For
sequential files, this name is ignored.

2. The SYSADATA DD statement specifies the input data set name.

3. The ASMLANGX DD statement specifies the output data set name.

Figure 50. JCL that invokes the ASMLANGX utility

Chapter 1. About IBM z/OS Metal C 51

Summary of useful references for the Metal C programmer
Table 6 lists topics of interest to the Metal C programmer and, for each topic, lists
information found in this document, as well as external references.

Table 6. Summary of useful references for the Metal C programmer

Information Internal reference External references

The base linkage conventions
that are used by the
generated modules.

“Metal C and MVS linkage
conventions” on page 2 For detailed information

about MVS linkage
conventions, see Linkage
Conventions in z/OS MVS
Programming: Assembler
Services Guide, SA23-1368.

The Metal C Runtime
Library.

Chapter 2, “Header files,” on
page 55 For additional information

about the Metal runtime
library, see
http://www.ibm.com/
systems/z/zos/metalc/.

Using assembler statements
within a C program.

v “Inserting HLASM
instructions into the
generated source code” on
page 21

v “Inserting non-executable
HLASM statements into
the generated source code”
on page 30

For detailed information
about HLASM programming,
see HLASM MVS & VM
Programmer's Guide.

For detailed information
about inline assembly
statements, see Inline
assembly statements in z/OS
XL C/C++ Language Reference.

For more information about
callable system services, see
z/OS MVS Programming:
Callable Services for High-Level
Languages.

Using the METAL option. “Programming with Metal
C” on page 2

Note: For detailed
information about the
METAL option and how it
interacts with other XL C
compiler options, see METAL
option in z/OS XL C/C++
User's Guide.

Making access registers
available to the Metal C
application.

“AR-mode programming
support” on page 35 For detailed information

about using access registers,
see z/OS MVS Programming:
Extended Addressability Guide.

Providing prolog and epilog
code to customize the
environment.

v “Compiler-generated
global SET symbols” on
page 14

v “Supplying your own
prolog and epilog code”
on page 13

Not applicable.

Building the application by
using JCL procedures.

“Building Metal C programs
using JCL” on page 47

Not applicable.

52 z/OS V2R1.0 Metal C Programming Guide and Reference

http://www.ibm.com/systems/z/zos/metalc/
http://www.ibm.com/systems/z/zos/metalc/

Table 6. Summary of useful references for the Metal C programmer (continued)

Information Internal reference External references

Building the application by
using z/OS UNIX System
Services.

“Building Metal C programs
using z/OS UNIX System
Services” on page 45

Not applicable.

Generating the appropriate
debugging information.

“Generation of debugging
information” on page 50

Not applicable.

Invoking the IDF debugger. “IDF debugger invocation”
on page 51 For specific information

about IDF, see
http://www.ibm.com/
software/awdtools/
debugtool/.

Chapter 1. About IBM z/OS Metal C 53

http://www.ibm.com/software/awdtools/debugtool/
http://www.ibm.com/software/awdtools/debugtool/
http://www.ibm.com/software/awdtools/debugtool/

54 z/OS V2R1.0 Metal C Programming Guide and Reference

Chapter 2. Header files

Header files for the Metal C Runtime Library are located in the z/OS UNIX file
system directory: /usr/include/metal/. To use these headers with a Metal C
compiler, you must instruct the compiler to search this directory. There are a
number of ways to do this.

Note: Some Metal C header files such as stdio.h have the same names as header
files for the Language Environment C/C++ Runtime Library. To avoid including
these, or inadvertently including any other headers supported by the LE library
and not by Metal C, remove the non-Metal libraries from the search order.
Depending on how you specify the system library search path, you need to remove
other libraries from the SYSLIB concatenation of the compiler, or specify the
NOSEARCH compiler option before pointing to /usr/include/metal/.

If you are compiling in batch, you can use the SEARCH compiler option:
SEARCH(/usr/include/metal/)

If you are compiling using the NOSEARCH compiler option, you have the
following options:
v Use the - I option of the xlc utility.

-I /usr/include/metal/

v Use the cinc attribute in the xlc configuration file.
cinc = -I /usr/include/metal/

builtins.h
The builtins.h header contains a list of built-in functions supported by the
compiler. A built-in function is inline code that is generated in place of an actual
function call. For more information about the built-in functions, see Using
hardware built-in functions in z/OS XL C/C++ Programming Guide and “AR-mode
programming support” on page 35.

ctype.h
The ctype.h header file declares functions used in character classification. The
ctype.h header file declares the following functions.

isalnum() isalpha() isblank() iscntrl() isdigit()
isgraph() islower() isprint() ispunct() isspace()
isupper() isxdigit() tolower() toupper()

Note: All the functions in the previous table use code page IBM-1047.

float.h
The float.h header file contains definitions of constants listed in ANSI 2.2.4.2.2. The
constants describe the characteristics of the internal representations of the three
floating-point data types: float, double, and long double. Table 7 on page 56 lists
the definitions contained by float.h.

© Copyright IBM Corp. 2013 55

Table 7. Definitions in float.h

Constant Description

FLT_RADIX The radix for a z/OS XL C Metal C
application. For FLOAT(IEEE), the value is 2.

FLT_MANT_DIG
DBL_MANT_DIG
LDBL_MANT_DIG

The number of hexadecimal digits stored to
represent the significand of a fraction.

FLT_DIG
DBL_DIG
LDBL_DIG

The number of decimal digits, q, such that
any floating-point number with q decimal
digits can be rounded into a floating-point
number with p radix FLT_RADIX digits, and
back again, without any change to the q
decimal digits.

FLT_MIN_10_EXP
DBL_MIN_10_EXP
LDBL_MIN_10_EXP

The minimum negative integer such that 10
raised to that power is in the range of
normalized floating-point numbers.

FLT_MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP

The maximum integer such that FLT_RADIX
raised to that power minus 1 is a
representable finite floating-point number.

FLT_MAX_10_EXP
DBL_MAX_10_EXP
LDBL_MAX_10_EXP

The maximum integer such that 10 raised to
that power is in the range of representable
finite floating-point numbers.

FLT_MAX
DBL_MAX
LDBL_MAX

The maximum representable finite
floating-point number.

FLT_EPSILON
DBL_EPSILON
LDBL_EPSILON

The difference between 1.0 and the least
value greater than 1.0 that is representable in
the given floating-point type.

FLT_MIN
DBL_MIN
LDBL_MIN

The minimum normalized positive
floating-point number.

DECIMAL_DIG The minimum number of decimal digits
needed to represent all the significant digits
for type long double.

FLT_EVAL_METHOD Describes the evaluation mode for floating
point operations. This value is 1, which
evaluates

v All operations and constants of types float
and double to type double.

v All operations and constants of long
double to type long double.

inttypes.h
The following macros are defined in inttypes.h. Each expands to a character string
literal containing a conversion specifier which can be modified by a length
modifier that can be used in the format argument of a formatted input/output
function when converting the corresponding integer type. These macros have the
general form of PRI or SCN, followed by the conversion specifier, followed by a
name corresponding to a similar type name in <inttypes.h>. In these names, the
suffix number represents the width of the type. For example, PRIdFAST32 can be
used in a format string to print the value of an integer of type int_fast32_t.

56 z/OS V2R1.0 Metal C Programming Guide and Reference

Compile requirement: In the following list all macros with the suffix MAX or 64
require long long to be available.

Macros for sprintf family for signed integers.

PRId8 PRId16 PRId32 PRId64
PRIdLEAST8 PRIdLEAST16 PRIdLEAST32 PRIdLEAST64
PRIdFAST8 PRIdFAST16 PRIdFAST32 PRIdFAST64
PRIdMAX
PRIdPTR
PRIi8 PRIi16 PRIi32 PRIi64
PRIiLEAST8 PRIiLEAST16 PRIiLEAST32 PRIiLEAST64
PRIiFAST8 PRIiFAST16 PRIiFAST32 PRIiFAST64
PRIiMAX
PRIiPTR

Compile requirement: In the following list all macros with the suffix MAX or 64
require long long to be available.

Macros for sprintf family for unsigned integers.

PRIo8 PRIo16 PRIo32 PRIo64
PRIoLEAST8 PRIoLEAST16 PRIoLEAST32 PRIoLEAST64
PRIoFAST8 PRIoFAST16 PRIoFAST32 PRIoFAST64
PRIoMAX
PRIoPTR
PRIu8 PRIu16 PRIu32 PRIu64
PRIuLEAST8 PRIuLEAST16 PRIuLEAST32 PRIuLEAST64
PRIuFAST8 PRIuFAST16 PRIuFAST32 PRIuFAST64
PRIuMAX
PRIuPTR
PRIx8 PRIx16 PRIx32 PRIx64
PRIxLEAST8 PRIxLEAST16 PRIxLEAST32 PRIxLEAST64
PRIxFAST8 PRIxFAST16 PRIxFAST32 PRIxFAST64
PRIxMAX
PRIxPTR
PRIX8 PRIX16 PRIX32 PRIX64
PRIXLEAST8 PRIXLEAST16 PRIXLEAST32 PRIXLEAST64
PRIXFAST8 PRIXFAST16 PRIXFAST32 PRIXFAST64
PRIXMAX
PRIXPTR

Compile requirement: In the following list all macros with the suffix MAX or 64
require long long to be available.

Macros for sscanf family for signed integers.

SCNd8 SCNd16 SCNd32 SCNd64
SCNdLEAST8 SCNdLEAST16 SCNdLEAST32 SCNdLEAST64
SCNdFAST8 SCNdFAST16 SCNdFAST32 SCNdFAST64
SCNdMAX
SCNdPTR
SCNi8 SCNi16 SCNi32 SCNi64
SCNiLEAST8 SCNiLEAST16 SCNiLEAST32 SCNiLEAST64
SCNiFAST8 SCNiFAST16 SCNiFAST32 SCNiFAST64

Chapter 2. Header files 57

SCNiMAX
SCNiPTR

Compile requirement: In the following list all macros with the suffix MAX or 64
require long long to be available.

Macros for sscanf family for unsigned integers.

SCNo8 SCNo16 SCNo32 SCNo64
SCNoLEAST8 SCNoLEAST16 SCNoLEAST32 SCNoLEAST64
SCNoFAST8 SCNoFAST16 SCNoFAST32 SCNoFAST64
SCNoMAX
SCNoPTR
SCNu8 SCNu16 SCNu32 SCNu64
SCNuLEAST8 SCNuLEAST16 SCNuLEAST32 SCNuLEAST64
SCNuFAST8 SCNuFAST16 SCNuFAST32 SCNuFAST64
SCNuMAX
SCNuPTR
SCNx8 SCNx16 SCNx32 SCNx64
SCNxLEAST8 SCNxLEAST16 SCNxLEAST32 SCNxLEAST64
SCNxFAST8 SCNxFAST16 SCNxFAST32 SCNxFAST64
SCNxMAX
SCNxPTR

limits.h
The limits.h header file contains symbolic names that represent standard values for
limits on resources, such as the maximum value for an object of type char.

Symbolic name
Resource limit

CHAR_BIT
8

CHAR_MAX
127 (_CHAR_SIGNED)

CHAR_MAX
255

CHAR_MIN
(-128) (_CHAR_SIGNED)

CHAR_MIN
0

INT_MAX
2147483647

INT_MIN
(-2147483647 - 1)

LLONG_MAX
(9223372036854775807LL)

LLONG_MIN
(-LLONG_MAX-1)

58 z/OS V2R1.0 Metal C Programming Guide and Reference

LONG_MAX
2147483647

LONGLONG_MAX
(9223372036854775807LL)

LONG_MIN
(-2147483647L - 1)

LONGLONG_MIN
(-LONGLONG_MAX - 1)

MB_LEN_MAX
4

SCHAR_MAX
127

SCHAR_MIN
(-128)

SHRT_MAX
32767

SHRT_MIN
(-32768)

SSIZE_MAX
2147483647

UCHAR_MAX
255

UINT_MAX
4294967295

ULONG_MAX
4294967295U

ULONGLONG_MAX
(18446744073709551615ULL)

ULLONG_MAX
(18446744073709551615ULL)

USHRT_MAX
65535

math.h
The math.h header file contains macro declarations for use with floating-point
support:

No feature test macro is required.

Object-like Macros: The definitions are as follows.

HUGE_VAL
A very large positive number that expands to a double expression.

HUGE_VALF
A very large positive number that expands to a float expression.

HUGE_VALL
A very large positive number that expands to a long double expression.

Chapter 2. Header files 59

INFINITY
A constant expression of type float representing positive infinity.

NAN
A constant expression of type float representing a quiet NaN.

metal.h
The metal.h header file contains function prototypes and data definitions related to
the Metal C runtime library, including the __cinit() and __cterm() functions.

The metal.h header file also includes __csysenv_s, which is the structure used to
describe the characteristics of a Metal C environment. For more information about
the __csysenv_s structure, see “__cinit() - Initialize a Metal C environment” on
page 72.

Note: The metal.h header file is automatically included by any Metal C runtime
library header file, so it is not necessary to explicitly include it if a header file is
being used.

stdarg.h
The stdarg.h header file defines macros used to access arguments in functions with
variable-length argument lists.

va_arg() va_copy() va_start() va_end()

The stdarg.h header file also defines the structure va_list.

The stdarg.h header file defines va_list as char *va_list.

stddef.h
The stddef.h header file defines the following types:

ptrdiff_t
The signed long type of the result of subtracting two pointers.

size_t typedef for the type of the value returned by sizeof.

ssize_t
similar to size_t, but must be a signed type.

The stddef.h header defines the macros NULL and offsetof. NULL is a pointer
that never points to a data object. The offsetof macro expands to the number of
bytes between a structure member and the start of the structure. The offsetof
macro has the form offsetof(structure_type, member).

stdio.h
The stdio.h header file declares the following functions:

snprintf() sprintf() sscanf() vsnprintf() vsprintf()
vsscanf()

60 z/OS V2R1.0 Metal C Programming Guide and Reference

The stdlio.h header file also contains definitions for the following macros, but you
should not alter their value:

NULL A pointer which never points to a data object.

stdint.h
The stdint.h header defines integer types, limits of specified width integer types,
limits of other integer types, and macros for integer constant expressions.

Note: For the exact width integer types, minimum-width integer types, limits of
specified width integer types, and exact width integer constants, bit sizes N with
the values 8, 16, 32, and 64 are supported.

Requirement: Use of the bit size 64 and greatest-width integer types or macros
require LP64 or the long long data type to be available.

Integer types

The following exact width integer types are defined.
v intN_t
v uintN_t

The following minimum-width integer types are defined.
v int_leastN_t
v uint_leastN_t

The following fastest minimum-width integer types are defined. These types are
the fastest to operate with among all integer types that have at least the specified
width.
v int_fastN_t
v uint_fastN_t

The following greatest-width integer types are defined. These types hold the value
of any signed/unsigned integer type.

Note: Requires long long to be available.
v intmax_t
v uintmax_t

The following integer types capable of holding object pointers are defined.
v intptr_t
v uintptr_t

Object-like macros for limits of integer types:

Macros for limits of exact width integer types.
v INTN_MAX
v INTN_MIN
v UINTN_MAX

Macros for limits of minimum width integer types.
v INT_LEASTN_MAX

Chapter 2. Header files 61

v INT_LEASTN_MIN
v UINT_LEASTN_MAX

Macros for limits of fastest minimum width integer types.
v INT_FASTN_MAX
v INT_FASTN_MIN
v UINT_FASTN_MAX

Macros for limits of greatest width integer types.
v INTMAX_MAX
v INTMAX_MIN
v UINTMAX_MAX

Macros for limits of pointer integer types.
v INTPTR_MAX
v INTPTR_MIN
v UINTPTR_MAX

Macros for limits of ptrdiff_t.
v PTRDIFF_MAX
v PTRDIFF_MIN

Macro for limit of size_t.
v SIZE_MAX

Function-like macros for integer constants:

Macros for minimum width integer constants.
v INTN_C(value)
v UINTN_C(value)

Macros for greatest-width integer constants:
v INTMAX_C(value)
v UINTMAX_C(value)

stdlib.h
The stdlib.h header file contains declarations for the following functions.

abs()1 atoi() atol() atoll() calloc()
div() free() labs() ldiv() llabs()
lldiv() malloc() __malloc31() qsort() rand()
rand_r() realloc() srand() strtod() strtof()
strtol() strtold() strtoll() strtoul() strtoull()

1 Built-in function.

Two type definitions are added to stdlib.h for the Compare and Swap functions
cs() and cds(). The structures defined are cs_t and cds_t.

62 z/OS V2R1.0 Metal C Programming Guide and Reference

The type size_t is declared in the header file. It is used for the type of the value
returned by sizeof. For more information on the types size_t, see “stddef.h” on
page 60.

The stdlib.h declares div_t, ldiv_t, and lldiv_t, which define the structure types
that are returned by div(), ldiv(), and lldiv().

The stdlib.h file also contains definitions for the following macros:

NULL The NULL pointer constant (also defined in stddef.h).

RAND_MAX
Expands to an integer representing the largest number that the rand() or
rand_r() function can return.

string.h
The string.h header file declares the string manipulation functions and their
built-in versions.

memccpy() memchr()1 memcmp()1 memcpy()1 memmove()
memset()1 strcat()1 strchr()1 strcmp()1 strcpy()1

strcspn() strdup() strlen()1 strncat()1 strncmp()1

strncpy()1 strpbrk() strrchr()1 strspn() strstr()
strtok() strtok_r()

1 Built-in function.

The string.h header file also defines the macro NULL and the type size_t. For
more information see “stddef.h” on page 60.

Chapter 2. Header files 63

64 z/OS V2R1.0 Metal C Programming Guide and Reference

Chapter 3. C functions available to Metal C programs

This topic describes the Metal C runtime library functions.

The linkage conventions used by the XL C METAL compiler option govern use of
the C functions that are available to XL C-compiled freestanding programs. For
more information, see “Metal C and MVS linkage conventions” on page 2.

When you use any of these supplied C functions, be aware of the information
provided in “Characteristics of compiler-generated HLASM source code” on page
4.

Characteristics of Metal C runtime library functions
Linkage to each function is through the default linkage provided by the METAL
option of the C compiler. This assumes that GPR 13 points to a stack frame in a
contiguous stack, and that the forward pointer in the stack frame contains the
address of the next available byte in the stack. The stack frame requirements for
each function are documented in Appendix A, “Function stack requirements,” on
page 123 so that the caller knows how much space to reserve.

The library functions support AMODE 31 and AMODE 64.

The library functions (with the exception of a few AR mode supporting functions)
expect the ASC mode to be Primary on entry. The AR mode support part of Metal
C ensures that this is enforced; however, if calling these library functions from
within HLASM embedded statements or their own HLASM programs, you need to
manage ASC mode to meet this requirement.

The library functions support IEEE floating point numbers.

The library uses code page IBM-1047 and the En_US locale definitions to perform
its functions.

System and static object libraries
The Metal C runtime library supports two versions of its library functions: a
system library and a static object library. The behavior of the functions within the
two versions is the same. What differs is where the functions are located and how
the Metal C application interacts with them.

System library

The system library is a version of the Metal C runtime library that exists within the
system's link pack area, and is made available during the system IPL process. It is
suggested that you use the system library if the Metal C application is run on a
level of z/OS that supports the runtime library, and the application runs after the
library has been made available. This library has the added advantage of not
requiring application module re-links when service is applied to the library.

To use the system library version, simply include the desired Metal C runtime
library headers in the Metal C application source code. The default behavior of the
headers is to generate code within the application that calls this system library. No

© Copyright IBM Corp. 2013 65

additional binding is needed in order for these function calls to work.

Static object library

The Static object library is a version of the Metal C runtime library that gets
directly bound with a Metal C application load module. The resulting application
is self-contained with respect to the library; all library function calls from the
application result in the functions bound within the load module to be driven.

It is suggested that you use the static object library if the Metal C application
meets either of the following requirements:
v The application is run on a supported level of z/OS that does not support the

system library (before z/OS V1.9).
v The application is run during system IPL before the system library has been

made available.

The static object library functions are provided in two system data sets:
SYS1.SCCR3BND and SYS1.SCCR6BND. SYS1.SCCR3BND is used with Metal C
applications that have been compiled using ILP32 and run AMODE 31.
SYS1.SCCR6BND is used with Metal C applications that have been compiled using
LP64 and run AMODE 64.

In order to use the static object library, you must take the following steps:
1. Define the __METAL_STATIC feature test macro before including the headers in

your Metal C program, and then compile the program. For example:
#define __METAL_STATIC
#include <stdio.h>

This will cause library function calls in the program to generate external
references to the functions contained within the SCCRnBND data sets.

2. Bind the compiled object with the corresponding SCCRnBND data set. How
this is done depends on the environment in which the binding takes place:
v Batch: When using the binder from a batch job, use the CALL option, and

use the SYSLIB DD to identify the static object library data set that you want
to bind with.

v Unix System Services shell: From the shell, it is suggested that the ld shell
command be used to bind the application with the library functions. This
avoids conflicts with the Language Environment stubs that the c89 family of
commands may introduce. Use the -S option to identify the static object
library data set that you want to bind with. For example:
-S //"’SYS1.SCCR3BND’"

Note: When service is applied to the static object library, the Metal C
application must be re-linked to pick up the changes.

General library usage notes
v A Metal C application can use either the system library or the static object

library, but not both. The mixing of system library calls and static object library
calls within the same application is not supported.

v All static objects bound to the application load module must be at compatible
service levels.

v Metal C runtime library functions are not supported under Language
Environment and must not be used within a Language Environment program,
because equivalent functions are already available.

66 z/OS V2R1.0 Metal C Programming Guide and Reference

User-replaceable heap services
The Metal C Runtime Library provides the ability to completely replace the
underlying heap services at run time. You can use this function if you want the
heap services to use a different storage management mechanism, for instance, one
that is already in use elsewhere within an application.

A Metal C application replaces the underlying heap services by providing sets of
function entry points in the __csysenv_s structure that is passed to the __cinit()
function. To have the function entry point fields available and recognized by the
__cinit() function, take the following steps:
v Define __METAL_CSYSENV_VERSION 2 so that the __csysenv_s structure

contains the heap service function entry point fields.
v In the __csysenv_s structure, set field __cseversion to __CSE_VERSION_2.
v In the __csysenv_s structure, provide addresses for heap functions that are to be

replaced.
v Call the __cinit() function, providing the __csysenv_s structure that was

initialized.

The Metal C application can provide at environment initialization time 8 bytes of
data that can be accessed by the replacement heap services. To reserve the 8 bytes
of data, take the following steps:
v Before calling the __cinit() function, set the user data of the application in field

__cseheapuserdata in the __csysenv_s structure.
v Use the R12 environment token value as a pointer to the __csysenvtoken_s

structure. In this structure, field __csetheapuserdata contains 8 bytes of data of the
application.

During the __cinit() call, field __csetheapuserdata can only be set from
__cseheapuserdata if heap services have been replaced; otherwise, field
__csetheapuserdata will be set to binary zeroes.

Two sets of heap service function entry points are provided, one set for replacing
heap services in the AMODE 31 version of the library, and the other set for
replacing heap services in the AMODE 64 version of the library.

AMODE 31 heap services

To replace heap services in the AMODE 31 version of the library, consider the
following __csysenv_s fields:

void * (*__cseamode31malloc) (size_t)
When specified, MCRTL AMODE 31 malloc() calls this routine to obtain a
piece of below-the-bar heap storage and returns its result to the caller of
malloc(). __cseamode31malloc is treated as having the same function
prototype as malloc(): void * malloc (size_t);

void (* __cseamode31free) (void *)
When specified, MCRTL AMODE 31 free() calls this routine to free a piece
of heap storage. __cseamode31free is treated as having the same function
prototype as free(): void free(void *);

void * (*__cseamode31realloc) (void *, size_t)
When specified, MCRTL AMODE 31 realloc() calls this routine to perform
a realloc for a piece of heap storage and returns its result to the caller of

Chapter 3. C functions available to Metal C programs 67

realloc(). __cseamode31realloc is treated as having the same function
prototype as realloc(): void * realloc (void *, size_t);

Providing this routine is optional. If realloc() is called when a
__cseamode31malloc routine has been provided but __cseamode31realloc has
not, realloc() will return a zero.

Note: __cseamode31malloc and __cseamode31free must be provided together.
__cseamode31realloc is optional, but when it is provided, the application must also
include the other AMODE 31 heap services in this set.

AMODE 64 heap services

To replace heap services in the AMODE 64 version of the library, consider the
following __csysenv_s fields:

void * (* __cseamode64malloc) (size_t)
When specified, MCRTL AMODE 64 malloc() calls this routine to obtain a
piece of above-the-bar heap storage and returns to the caller of malloc().
__cseamode64malloc is treated as having the same function prototype as
malloc(): void * malloc (size_t);

void * (*__cseamode64malloc31) (size_t)
When specified, MCRTL AMODE 64 __malloc31() calls this routine to
obtain a piece of below-the-bar heap storage and returns its result to the
caller of __malloc31(). __cseamode64malloc31 is treated as having the same
function prototype as __malloc31(): void * __malloc31(size_t);

void (* __cseamode64free) (void *)
When specified, MCRTL AMODE 64 free() calls this routine to free a piece
of heap storage. __cseamode64free is treated as having the same function
prototype as free(): void free(void *);

Note that MCRTL AMODE 64 free() accepts as input and processes heap
storage that is allocated above or below the bar. The user-specified
__cseamode64free routine must provide the same capability.

void * (*__cseamode64realloc) (void *, size_t)
When specified, MCRTL AMODE 64 realloc() calls this routine to perform
a realloc for a piece of heap storage and returns its result to the caller of
realloc(). __cseamode64realloc is treated as having the same function
prototype as realloc(): void * realloc (void *, size_t);

Providing this routine is optional. If realloc() is called when a
__cseamode64malloc routine has been provided but __cseamode64realloc has
not, realloc() will return a zero.

Note that MCRTL AMODE 64 realloc() accepts as input and processes heap
storage that is allocated above or below the bar. The user-specified
__cseamode64realloc routine must provide the same capability.

Note: __cseamode64malloc, __cseamode64malloc31, and __cseamode64free must all be
provided together. __cseamode64realloc is optional, but when it is provided, the
application must also include the other AMODE 64 heap services in this set.

Usage notes
v Each heap service gets control in the AMODE of the calling service. The heap

service must return to the calling service in that same AMODE.

68 z/OS V2R1.0 Metal C Programming Guide and Reference

v Each heap service is called using standard Metal C linkage conventions,
including:
– GPR 1 containing the address of the function parameter list (using C style

parameter passing)
– GPR 13 containing the address of a stack frame allocated on a contiguous

Metal C stack

GPR 12 contains the environment token representing the Metal C environment
that is currently in use.

v It is not necessary to provide a replacement for the calloc() function. The calloc()
function calls malloc() as part of its processing, so replacing malloc() indirectly
alters the behavior of calloc() as well.

v When user-provided heap services are in use, the Metal C Runtime Library
makes no attempt to keep track of any heap storage that has been allocated by
the application. The application is entirely responsible for tracking its heap
storage, and for freeing it after it calls __cterm() to terminate the Metal C
environment.

v The heap allocation functions should return NULL when they are unable to
obtain storage. The application is responsible for capturing its own diagnostic
data when necessary.

v The Metal C Runtime Library expects the following alignment for the storage
that is returned by the replacement heap services:
– Storage returned from the below-the-bar heap (AMODE 64 __malloc31(), and

AMODE 31 malloc()) is doubleword aligned.
– Storage returned from the above-the-bar heap (AMODE 64 malloc()) is

quadword aligned.

abs() — Calculate integer absolute value
Format
#include <stdlib.h>

int abs(int n);

General description

The abs() function returns the absolute value of an argument n.

For the integer version of abs(), the minimum allowable integer is INT_MIN+1.
(INT_MIN is a macro that is defined in the limits.h header file.) For example, with
the Metal C compiler, INT_MIN+1 is -2147483647.

Returned value

The returned value is the absolute value, if the absolute value is possible to
represent.

Otherwise the input value is returned.

Related Information
v “limits.h” on page 58
v “stdlib.h” on page 62
v “labs() — Calculate long absolute value” on page 79

Chapter 3. C functions available to Metal C programs 69

atoi() — Convert character string to integer
Format
#include <stdlib.h>

int atoi(const char *nptr);

General description

The atoi() function converts the initial portion of the string pointed to by nptr to a
'int'. This is equivalent to
(int)strtol(nptr, (char **)NULL, 10)

Returned value

If successful, atoi() returns the converted int value represented in the string.

If unsuccessful, atoi() returns an undefined value.

Related Information
v “stdlib.h” on page 62
v “atol() — Convert character string to long”
v “atoll() — Convert character string to signed long long” on page 71
v “strtol() — Convert Character String to Long” on page 111
v “strtoll() — Convert String to Signed Long Long” on page 114
v “strtoul() — Convert String to Unsigned Integer” on page 115
v “strtoull() — Convert String to Unsigned Long Long” on page 116

atol() — Convert character string to long
Format
#include <stdlib.h>

long int atol(const char *nptr);

General description

The atol() function converts the initial portion of the string pointed to by nptr to a
'long int'. This is equivalent to
strtol(nptr, (char **)NULL, 10)

Returned value

If successful, atol() returns the converted long int value represented in the string.

If unsuccessful, atol() returns an undefined value.

Related Information
v “stdlib.h” on page 62
v “atoi() — Convert character string to integer”
v “atoll() — Convert character string to signed long long” on page 71
v “strtol() — Convert Character String to Long” on page 111
v “strtoll() — Convert String to Signed Long Long” on page 114
v “strtoul() — Convert String to Unsigned Integer” on page 115
v “strtoull() — Convert String to Unsigned Long Long” on page 116

atoi

70 z/OS V2R1.0 Metal C Programming Guide and Reference

atoll() — Convert character string to signed long long
Format
#define _ISOC99_SOURCE
#include <stdlib.h>
long long atoll(const char *nptr);

Compile Requirement: Use of this function requires the long long data type. See
z/OS XL C/C++ Language Reference for information about how to make long long
available.

General description

The atoll() function converts the initial portion of the string pointed to by nptr to a
'long long int'. This is equivalent to strtoll(nptr, (char **)NULL, 10).

Returned value

If successful, atoll() returns the converted signed long long value, represented in
the string. If unsuccessful, it returns an undefined value.

Related Information
v “stdlib.h” on page 62
v “atoi() — Convert character string to integer” on page 70
v “atol() — Convert character string to long” on page 70
v “strtol() — Convert Character String to Long” on page 111
v “strtoll() — Convert String to Signed Long Long” on page 114
v “strtoul() — Convert String to Unsigned Integer” on page 115
v “strtoull() — Convert String to Unsigned Long Long” on page 116

calloc() — Reserve and initialize storage
Format
#include <stdlib.h>

void *calloc(size_t num, size_t size);

General description

The calloc() function reserves storage space for an array of num elements, each of
length size bytes. The calloc() function then gives all the bits of each element an
initial value of 0.

The calloc() function returns a pointer to the reserved space. The storage space to
which the returned value points is aligned for storage of any type of object.

Note: Use of this function requires that an environment has been set up through
the __cinit() function. When the function is called, GPR 12 must contain the
environment token created by the __cinit() call.

Returned value

If successful, calloc() returns the pointer to the area of memory reserved.

If there is not enough space to satisfy the request or if num or size is 0, calloc()
returns NULL.

atoll

Chapter 3. C functions available to Metal C programs 71

Related Information
v “stdlib.h” on page 62
v “free() — Free a block of storage” on page 76
v “malloc() — Reserve storage block” on page 81
v “__malloc31() — Allocate 31–bit storage” on page 81
v “realloc() — Change reserved storage block size” on page 86

__cinit() - Initialize a Metal C environment
Format
#include <metal.h>
__csysenv_t __cinit(struct __csysenv_s * csysenv);

General description

The __cinit() function establishes a Metal C environment based on the
characteristics in the input csysenv structure. This environment is used when calling
Metal C functions that require an environment, such as those related to storage
management (malloc(), free(), and so on). Storage for the environment structures is
obtained by using the attributes specified in the input csysenv structure.

Use of this function requires the long long data type. See z/OS XL C/C++ Language
Reference for information about how to make long long data type available

The environment token created by __cinit() can be used from both AMODE 31 and
AMODE 64 programs. Calls to __malloc31() always affect the below-the-bar heap.
Calls made while in AMODE 31 to all other functions that obtain storage affect the
below-the-bar heap; calls made while in AMODE 64 affect the above-the-bar heap.

Table 8. csysenv argument in __cinit()

Argument Description

csysenv A structure describing the characteristics of the
environment to be created.

The details on the csysenv (__csysenv_s) structure is shown as follows:
struct __csysenv_s {
int __cseversion; /* Control block version number */

/* Must be set to __CSE_VERSION_1 */

int __csesubpool; /* for 31 bit storage */
__ptr31(void, __csetcbowner) /* owning TCB for resources */

/* default: TCB mode - caller tcb, */
/* SRB. XMEM - CMRO TCB */

int __csereserved; /* Reserved field */
char __csettknowner[16]; /* TCB token of owning TCB for */

/* above the bar storage */
/* default: caller tcbtoken */
/* SRB mode: tcbtoken must be */
/* specified */

unsigned int
__cseheap31initsize; /* Minimum size, in bytes, to obtain

for the initial AMODE 31 heap storage.
If 0, defaults to 32768 bytes */

unsigned int
__cseheap31incrsize; /* Minimum size, in bytes, to obtain

when expanding the AMODE 31 heap.
If 0, defaults to 32768 bytes */

calloc

72 z/OS V2R1.0 Metal C Programming Guide and Reference

#ifdef __LL
unsigned long long

__cseheap64initsize; /* Minimum size, in MB, to obtain
for the initial AMODE 64 heap storage.
If 0, defaults to 1 MB */

unsigned long long
__cseheap64incrsize; /* Minimum size, in MB, to obtain

When expanding the AMODE 64 heap.
If 0, defaults to 1MB */

unsigned long long
__cseheap64usertoken; /* usertoken for use with ?iarv64

to obtain above the bar storage */
#else
unsigned int

__cseheap64initsize_hh;
unsigned int

__cseheap64initsize; /* Minimum size, in MB, to obtain
for the initial AMODE 64 heap storage.
If 0, defaults to 1 MB */

unsigned int
__cseheap64incrsize_hh;

unsigned int
__cseheap64incrsize; /* Minimum size, in MB, to obtain

When expanding the AMODE 64 heap.
If 0, defaults to 1MB */

unsigned int
__cseheap64usertoken_hh;

unsigned int
__cseheap64usertoken;/* usertoken for use with ?iarv64

to obtain above the bar storage */
#endif

unsigned int /* AMODE 64 Storage Attributes */
__cseheap64fprot:1, /* On, AMODE 64 heap storage is to be

fetch protected
Off, storage is not fetch
protected */

__cseheap64cntlauth:1; /* On, AMODE 64 heap storage has
CONTROL=AUTH attribute
Off, storage is CONTROL=UNAUTH */

int __csereserved1[7]; /* Reserved for future use */
};

Note: The entire __csysenv_s structure must be cleared to binary zeros before
initializing specific fields within it.

Returned value

If successful, __cinit() returns an environment token that is used on subsequent
calls to Metal C functions that require an environment. If unable to create an
environment, __cinit() returns 0.

Example
#include <metal.h>
#include <stdlib.h>
#include <string.h>

#ifdef _LP64
register void * myenvtkn __asm("r12");

#else
register void * myetkr12 __asm("r12");
__csysenv_t myenvtkn;
#endif

__cinit

Chapter 3. C functions available to Metal C programs 73

void mymtlfcn(void) {
struct __csysenv_s mysysenv;

void * mystg;
void * my31stg;

/***/
/* Initialize the csysenv structure. */
/***/
memset(&mysysenv, 0x00, sizeof(mysysenv));

mysysenv.__cseversion = __CSE_VERSION_1;

mysysenv.__csesubpool = 129;

/***/
/* Set heap initial and increment sizes. */
/***/
mysysenv.__cseheap31initsize = 131072;
mysysenv.__cseheap31incrsize = 8192;
mysysenv.__cseheap64initsize = 20;
mysysenv.__cseheap64incrsize = 1;
#ifdef _LP64
/***/
/* Create a Metal C environment. */
/***/
myenvtkn = (void *) __cinit(&mysysenv);

#else
/***/
/* Create a Metal C environment. */
/***/
myenvtkn = __cinit(&mysysenv);

/***/
/* Save the high half of R12 and then set R12 to */
/* the 8 byte environment token. */
/***/
__asm(" LG 12,%0\n"

:
: "m"(myenvtkn)
: "r12");

#endif

/***/
/* Call functions that require an environment. */
/***/
mystg = malloc(1048576);
my31stg = __malloc31(100);

/***/
/* Clean up the environment. */
/***/
__cterm((__csysenv_t) myenvtkn);

}

In order to share the environment token to other source files there are 2 options:
v Compile all Metal C files that make up the program by using the

RESERVED_REG("r12") compiler option. This reserves register 12 so that the
environment token will remain untouched by the compiled code.

v Pass myenvtkn by using other methods, and for any source that needs to use the
environment token declare the global register variable as in this example and
assign the environment token to it.

__cinit

74 z/OS V2R1.0 Metal C Programming Guide and Reference

Output: None.

__cterm() - Terminate a Metal C environment
Format
#include <metal.h>
void __cterm(__csysenv_t csysenvtkn);

General description

The __cterm() function terminates a Metal C environment, freeing all resources
obtained on behalf of the environment.

Table 9. csysenvtkn argument in __cterm()

Argument Description

csysenvtkn The environment token representing the environment to
be terminated.

Returned value

None.

Example

See the example provided for the __cinit() function.

Output: None.

div() — Calculate quotient and remainder
Format
#include <stdlib.h>

div_t div(int numerator, int denominator);

General description

The div() function calculates the quotient and remainder of the division of
numerator by denominator.

Returned value

The div() function returns a structure of type div_t, containing both the quotient
int quot and the remainder int rem. This structure is defined in stdlib.h. If the
returned value cannot be represented, the behavior of div() is undefined. If
denominator is 0, a divide by 0 exception is raised.

Related Information
v “stdlib.h” on page 62
v “ldiv() — Compute quotient and remainder of integral division” on page 79
v “lldiv() — Compute quotient and remainder of integral division for long long

type” on page 80

__cinit

Chapter 3. C functions available to Metal C programs 75

free() — Free a block of storage
Format
#include <stdlib.h>

void free(void *ptr);

General description

The free() function frees a block of storage pointed to by ptr. The ptr variable
points to a block previously reserved with a call to calloc(), malloc(), or realloc().
The number of bytes freed is the number of bytes specified when you reserved (or
reallocated, in the case of realloc()), the block of storage. If ptr is NULL, free()
simply returns without freeing anything. Since ptr is passed by value free() will not
set ptr to NULL after freeing the memory to which it points.

Notes:

1. Use of this function requires that an environment has been set up by using the
__cinit() function. When the function is called, GPR 12 must contain the
environment token created by the __cinit() call.

2. Attempting to free a block of storage not allocated with calloc(), malloc(), or
realloc(), or previously freed storage, can affect the subsequent reserving of
storage and lead to an abend.

Returned value

free() returns no value.

Related Information
v “stdlib.h” on page 62
v “calloc() — Reserve and initialize storage” on page 71
v “malloc() — Reserve storage block” on page 81
v “__malloc31() — Allocate 31–bit storage” on page 81
v “realloc() — Change reserved storage block size” on page 86

isalnum() to isxdigit() — Test integer value
Format
#include <ctype.h>

int isalnum(int c);
int isalpha(int c);
int isblank(int c);
int iscntrl(int c);
int isdigit(int c);
int isgraph(int c);
int islower(int c);
int isprint(int c);
int ispunct(int c);
int isspace(int c);
int isupper(int c);
int isxdigit(int c);

free

76 z/OS V2R1.0 Metal C Programming Guide and Reference

General description

The functions listed in the previous section, which are all declared in ctype.h, test a
given integer value. The valid integer values for c are those representable as an
unsigned char or EOF.

Here are descriptions of each function in this group.

isalnum()
Test for an upper- or lowercase letter, or a decimal digit, as defined by
code page IBM-1047.

isalpha()
Test for an alphabetic character, as defined by code page IBM-1047.

isblank()
Test for a blank character, as defined by code page IBM-1047.

iscntrl()
Test for any control character, as defined by code page IBM-1047.

isdigit()
Test for a decimal digit, as defined by code page IBM-1047.

isgraph()
Test for a printable character excluding space, as defined by code page
IBM-1047.

islower()
Test for a lowercase character, as defined by code page IBM-1047.

isprint()
Test for a printable character including space, as defined by code page
IBM-1047.

ispunct()
Test for any non-alphanumeric printable character, excluding space, as
defined by code page IBM-1047.

isspace()
Test for a white space character, as defined by code page IBM-1047.

isupper()
Test for an uppercase character, as defined by code page IBM-1047.

isxdigit()
Test for a hexadecimal digit, as defined by code page IBM-1047.

Returned value

If the integer satisfies the test condition, these functions return nonzero.

If the integer does not satisfy the test condition, these functions return 0.

Related Information
v “ctype.h” on page 55
v “tolower(), toupper() — Convert Character Case” on page 118

isalpha() — Test for alphabetic character classification
The information for this function is included in “isalnum() to isxdigit() — Test
integer value” on page 76.

isalnum to isxdigit

Chapter 3. C functions available to Metal C programs 77

isblank() — Test for blank character classification
The information for this function is included in “isalnum() to isxdigit() — Test
integer value” on page 76.

iscntrl() — Test for control classification
The information for this function is included in “isalnum() to isxdigit() — Test
integer value” on page 76.

isdigit() — Test for decimal-digit classification
The information for this function is included in “isalnum() to isxdigit() — Test
integer value” on page 76.

isgraph() — Test for graphic classification
The information for this function is included in “isalnum() to isxdigit() — Test
integer value” on page 76.

islower() — Test for lowercase
The information for this function is included in “isalnum() to isxdigit() — Test
integer value” on page 76.

isprint() — Test for printable character classification
The information for this function is included in “isalnum() to isxdigit() — Test
integer value” on page 76.

ispunct() — Test for punctuation classification
The information for this function is included in “isalnum() to isxdigit() — Test
integer value” on page 76.

isspace() — Test for space character classification
The information for this function is included in “isalnum() to isxdigit() — Test
integer value” on page 76.

isupper() — Test for uppercase letter classification
The information for this function is included in “isalnum() to isxdigit() — Test
integer value” on page 76.

isxdigit() — Test for hexadecimal digit Classification
The information for this function is included in “isalnum() to isxdigit() — Test
integer value” on page 76.

isblank

78 z/OS V2R1.0 Metal C Programming Guide and Reference

labs() — Calculate long absolute value
Format
#include <stdlib.h>

long int labs(long int n);

General description

The labs() function calculates the absolute value of its long integer argument n. The
result is undefined when the argument is equal to LONG_MIN, the smallest available
long integer (-2 147 483 648). The value LONG_MIN is defined in the limits.h header
file.

Returned value

The labs() function returns the absolute value of the long integer argument n.

Related Information
v “limits.h” on page 58
v “stdlib.h” on page 62
v “abs() — Calculate integer absolute value” on page 69
v “llabs() — Calculate absolute value of long long integer”

ldiv() — Compute quotient and remainder of integral division
Format
#include <stdlib.h>

ldiv_t ldiv(long int numerator, long int denominator);

General description

The ldiv() function calculates the quotient and remainder of the division of
numerator by denominator.

Returned value

The ldiv() function returns a structure of type ldiv_t, containing both the quotient
long int quot and the remainder long int rem.

If the value cannot be represented, the returned value is undefined. If denominator
is 0, a divide by 0 exception is raised.

Related Information
v “stdlib.h” on page 62
v “div() — Calculate quotient and remainder” on page 75
v “lldiv() — Compute quotient and remainder of integral division for long long

type” on page 80

llabs() — Calculate absolute value of long long integer

Format
#include <stdlib.h>

long long llabs(long long int n);

labs

Chapter 3. C functions available to Metal C programs 79

Compile Requirement: Use of this function requires the long long data type. See
z/OS XL C/C++ Language Reference for information about how to make long long
available.

General description

The llabs() function calculates the absolute value of its long long integer argument
n. The result is undefined when the argument is equal to LONGLONG_MIN, the
smallest available long long integer (-9 223 372 036 854 775 808). The value
LONGLONG_MIN is defined in the limits.h header file.

Returned value

The llabs() function returns the absolute value of the long long integer argument n.

Related Information
v “stdlib.h” on page 62
v “limits.h” on page 58
v “abs() — Calculate integer absolute value” on page 69
v “labs() — Calculate long absolute value” on page 79

lldiv() — Compute quotient and remainder of integral division for long
long type

Format
#include <stdlib.h>

lldiv_t lldiv (long long number, long long denom);

Compile Requirement: Use of this function requires the long long data type. See
z/OS XL C/C++ Language Reference for information about how to make long long
available.

General description

The lldiv() function calculates the quotient and remainder of the division of
numerator by denominator.

Returned value

The lldiv() function returns a structure of type lldiv_t, containing both the
quotient long long quot and the remainder long long rem.

If the value cannot be represented, the returned value is undefined. If denominator
is 0, a divide by 0 exception is raised.

Related Information
v “stdlib.h” on page 62
v “div() — Calculate quotient and remainder” on page 75
v “ldiv() — Compute quotient and remainder of integral division” on page 79

llabs

80 z/OS V2R1.0 Metal C Programming Guide and Reference

malloc() — Reserve storage block
Format
#include <stdlib.h>

void *malloc(size_t size);

General description

The malloc() function reserves a block of storage of size bytes. Unlike the calloc()
function, the content of the storage allocated is indeterminate. The storage to which
the returned value points is always aligned for storage of any type of object.

Note: Use of this function requires that an environment has been set up through
the __cinit() function. When the function is called, GPR12 must contain the
environment token created by the __cinit() call.

Returned value

If successful, malloc() returns a pointer to the reserved space.

If not enough storage is available, or if size was specified as 0, malloc() returns
NULL.

Related Information
v “stdlib.h” on page 62
v “calloc() — Reserve and initialize storage” on page 71
v “free() — Free a block of storage” on page 76
v “__malloc31() — Allocate 31–bit storage”
v “realloc() — Change reserved storage block size” on page 86

__malloc31() — Allocate 31–bit storage
Format
#include <stdlib.h>

void *__malloc31(size_t size);

General description

The __malloc31() function reserves a block of storage of size bytes from 31-bit
addressable storage. The content of the storage allocated is indeterminate. The
storage space to which the returned value points is always suitably aligned for
storage of any type of object.

Note: Use of this function requires that an environment has been set up by using
the __cinit() function. When the function is called, GPR 12 must contain the
environment token created by the __cinit() call.

Returned value

If successful, __malloc31() returns a pointer to the reserved space.

If not enough storage is available, or if size was specified as 0, __malloc31() returns
NULL.

malloc

Chapter 3. C functions available to Metal C programs 81

Related Information
v “stdlib.h” on page 62
v “calloc() — Reserve and initialize storage” on page 71
v “free() — Free a block of storage” on page 76
v “malloc() — Reserve storage block” on page 81
v “realloc() — Change reserved storage block size” on page 86

memccpy() — Copy bytes in memory
Format
#include <string.h>

void *memccpy(void *__restrict__s1, const void *__restrict__s2, int c, size_t n);

General description

The memccpy() function copies bytes from memory area s2 into memory area s1,
stopping after the first occurrence of byte c (converted to an unsigned char) is
copied, or after n bytes are copied, whichever comes first.

Returned value

If successful, memccpy() returns a pointer to the byte after the copy of c in s1.

If c was not found in the first n bytes of s2, memccpy() returns a NULL pointer.

Related Information
v “string.h” on page 63
v “memchr() — Search buffer”
v “memcmp() — Compare bytes” on page 83
v “memcpy() — Copy buffer” on page 83
v “memmove() — Move buffer” on page 84
v “memset() — Set buffer to value” on page 84
v “strcpy() — Copy String” on page 101

memchr() — Search buffer
Format
#include <string.h>

void *memchr(const void *buf, int c, size_t count);

General description

The memchr() built-in function searches the first count bytes pointed to by buf for
the first occurrence of c converted to an unsigned character. The search continues
until it finds c or examines count bytes.

Returned value

If successful, memchr() returns a pointer to the location of c in buf.

If c is not within the first count bytes of buf, memchr() returns NULL.

__malloc31

82 z/OS V2R1.0 Metal C Programming Guide and Reference

Related Information
v “string.h” on page 63
v “memccpy() — Copy bytes in memory” on page 82
v “memcmp() — Compare bytes”
v “memcpy() — Copy buffer”
v “memmove() — Move buffer” on page 84
v “memset() — Set buffer to value” on page 84
v “strchr() — Search for Character” on page 100

memcmp() — Compare bytes
Format
#include <string.h>

int memcmp(const void *buf1, const void *buf2, size_t count);

General description

The memcmp() built-in function compares the first count bytes of buf1 and buf2.

The relation is determined by the sign of the difference between the values of the
leftmost first pair of bytes that differ. The values depend on EBCDIC encoding.
This function is not locale sensitive.

Returned value

Indicates the relationship between buf1 and buf2 as follows:

Value Meaning

< 0 The contents of the buffer pointed to by buf1 less than the contents of the
buffer pointed to by buf2

= 0 The contents of the buffer pointed to by buf1 identical to the contents of
the buffer pointed to by buf2

> 0 The contents of the buffer pointed to by buf1 greater than the contents of
the buffer pointed to by buf2

Related Information
v “string.h” on page 63
v “memccpy() — Copy bytes in memory” on page 82
v “memchr() — Search buffer” on page 82
v “memcpy() — Copy buffer”
v “memmove() — Move buffer” on page 84
v “memset() — Set buffer to value” on page 84
v “strcmp() — Compare Strings” on page 101

memcpy() — Copy buffer
Format
#include <string.h>

void *memcpy(void * __restrict__dest, const void * __restrict__src, size_t count);

memchr

Chapter 3. C functions available to Metal C programs 83

General description

The memcpy() built-in function copies count bytes from the object pointed to by src
to the object pointed to by dest. For memcpy(), the source characters may be
overlaid if copying takes place between objects that overlap. Use the memmove()
function to allow copying between objects that overlap.

Returned value

The memcpy() function returns the value of dest.

Related Information
v “string.h” on page 63
v “memccpy() — Copy bytes in memory” on page 82
v “memchr() — Search buffer” on page 82
v “memmove() — Move buffer”
v “memset() — Set buffer to value”
v “strcpy() — Copy String” on page 101

memmove() — Move buffer
Format
#include <string.h>

void *memmove(void *dest, const void *src, size_t count);

General description

The memmove() function copies count bytes from the object pointed to by src to the
object pointed to by dest. The function allows copying between possibly
overlapping objects as if the count bytes of the object pointed to by src must first
copied into a temporary array before being copied to the object pointed to by dest.

Returned value

The memmove() function returns the value of dest.

Related Information
v “string.h” on page 63
v “memccpy() — Copy bytes in memory” on page 82
v “memchr() — Search buffer” on page 82
v “memcpy() — Copy buffer” on page 83
v “memset() — Set buffer to value”

memset() — Set buffer to value
Format
#include <string.h>

void *memset(void *dest, int c, size_t count);

General description

The memset() built-in function sets the first count bytes of dest to the value c
converted to an unsigned int.

memcpy

84 z/OS V2R1.0 Metal C Programming Guide and Reference

Returned value

memset() returns the value of dest.

Related Information
v “string.h” on page 63
v “memccpy() — Copy bytes in memory” on page 82
v “memchr() — Search buffer” on page 82
v “memcpy() — Copy buffer” on page 83
v “memmove() — Move buffer” on page 84

qsort() — Sort array
Format
#include <stdlib.h>

void qsort(void *base, size_t num, size_t width,
int(*compare)(const void *element1, const void *element2));

General description

The qsort() function sorts an array of num elements, each of width bytes in size,
where the first element of the array is pointed to by base.

The compare pointer points to a function, which you supply, that compares two
array elements and returns an integer value specifying their relationship. The
qsort() function calls the comparison function one or more times during the sort,
passing pointers to two array elements on each call. The comparison function must
compare the elements and return one of the following values:

Value Meaning

< 0 element1 less than element2

0 element1 equal to element2

> 0 element1 greater than element2

The sorted array elements are stored in increasing order, as returned by the
comparison function. You can sort in reverse order by reversing the “greater than”
and “less than” logic in the comparison function. If two elements are equal, their
order in the sorted array is unspecified. The qsort() function overwrites the
contents of the array with the sorted elements.

Returned value

The qsort() function returns no values.

Related information
v “stdlib.h” on page 62

rand() — Generate random number
Format
#include <stdlib.h>

int rand(void);

memset

Chapter 3. C functions available to Metal C programs 85

General Description

The rand() function generates a pseudo-random integer in the range 0 to RAND_MAX.
Use the srand() function before calling rand() to set a seed for the random number
generator. If you do not make a call to srand(), the default seed is 1.

Note: Use of this function requires that an environment has been set up by using
the __cinit() function. When the function is called, GPR 12 must contain the
environment token created by the __cinit() call.

Returned Value

The rand() function returns the calculated value.

Related Information
v “stdlib.h” on page 62
v “rand_r() — Pseudo-random number generator”
v “srand() — Set Seed for rand() Function” on page 94

rand_r() — Pseudo-random number generator
Format
#include <stdlib.h>

int rand_r(unsigned int *seed);

General Description

The rand_r() function generates a sequence of pseudo-random integers in the range
0 to RAND_MAX. (The value of the RAND_MAX macro will be at least 32767.)

If rand_r() is called with the same initial value for the object pointed to by seed and
that object is not modified between successive returns and calls to rand_r(), the
same sequence shall be generated.

Returned Value

The rand_r() function returns a pseudo-random integer.

Related Information
v “stdlib.h” on page 62
v “rand() — Generate random number” on page 85
v “srand() — Set Seed for rand() Function” on page 94

realloc() — Change reserved storage block size
Format
#include <stdlib.h>

void *realloc(void *ptr, size_t size);

rand

86 z/OS V2R1.0 Metal C Programming Guide and Reference

General Description

The realloc() function changes the size of a previously reserved storage block. The
ptr argument points to the beginning of the block. The size argument gives the new
size of the block in bytes. The contents of the block are unchanged up to the
shorter of the new and old sizes.

If the ptr is NULL, realloc() reserves a block of storage of size bytes. It does not
give all bits of each element an initial value of 0.

If size is 0 and ptr is not NULL, the storage pointed to by ptr is freed and NULL is
returned.

If you use realloc() with a pointer that does not point to a ptr created previously by
malloc(), calloc(), or realloc(), or if you pass ptr to storage already freed, you get
undefined behavior—typically an exception.

If you ask for more storage, the contents of the extension are undefined and are
not guaranteed to be 0.

The storage to which the returned value points is aligned for storage of any type
of object.

Note: Use of realloc() requires that an environment has been set up by using the
__cinit() function. When the function is called, GPR 12 must contain the
environment token created by the __cinit() call.

Returned Value

If successful, realloc() returns a pointer to the reallocated storage block. The storage
location of the block might be moved. Thus, the returned value is not necessarily
the same as the ptr argument to realloc().

The returned value is NULL if size is 0. If there is not enough storage to expand
the block to the given size, the original block is unchanged and a NULL pointer is
returned.

Related Information
v “stdlib.h” on page 62
v “calloc() — Reserve and initialize storage” on page 71
v “free() — Free a block of storage” on page 76
v “malloc() — Reserve storage block” on page 81
v “__malloc31() — Allocate 31–bit storage” on page 81

snprintf() — Format and write data
Format
#include <stdio.h>

int snprintf(char *__restrict__ s, size_t n, const char *__restrict__ format, ...);

General Description

The snprintf() function formats and writes output to an array (specified by
argument s). If n is zero, nothing is written, and s may be a null pointer.
Otherwise, output characters beyond the n-1st are discarded rather than being

realloc

Chapter 3. C functions available to Metal C programs 87

written to the array, and a null character is written at the end of the characters
actually written into the array. If copying takes place between objects that overlap,
the behavior is undefined.

Note: Use of snprintf() requires that an environment has been set up by using the
__cinit() function. When the function is called, GPR 12 must contain the
environment token created by the __cinit() call.

Returned Value

The snprintf() function returns the number of characters that would have been
written had n been sufficiently large, not counting the terminating null character,
or a negative value if an encoding error occurred. Thus, the null-terminated output
has been completely written if and only if the returned value is nonnegative and
less than n.

Related Information
v “stdio.h” on page 60
v “sprintf() — Format and Write Data”
v “sscanf() — Read and Format Data” on page 94

sprintf() — Format and Write Data
Format
#include <stdio.h>

int sprintf(char *__restrict__buffer, const char *__restrict__format-string, ...);

General Description

The sprintf() function formats and stores a series of characters and values in the
array pointed to by buffer. Any argument-list is converted and put out according to
the corresponding format specification in the format-string. If the strings pointed to
by buffer and format-string overlap, behavior is undefined.

The format-string consists of ordinary characters, escape sequences, and conversion
specifications. The ordinary characters are copied in order of their appearance.
Conversion specifications, beginning with a percent sign (%) or the sequence (%n$)
where n is a decimal integer in the range [1,NL_ARGMAX], determine the output
format for any argument-list following the format-string. The format-string can
contain multibyte characters beginning and ending in the initial shift state. When
the format-string includes the use of the optional prefix ll to indicate the size
expected is a long long datatype then the corresponding value in the argument list
should be a long long datatype if correct output is expected.
v If the %n$ conversion specification is found, the value of the nth argument after

the format-string is converted and output according to the conversion
specification. Numbered arguments in the argument list can be referenced from
format-string as many times as required.

v The format-string can contain either form of the conversion specification, that is,
% or %n$ but the two forms cannot be mixed within a single format-string except
that %% can be mixed with the %n$ form. When numbered conversion
specifications are used, specifying the 'nth' argument requires that the first to
(n-1)th arguments are specified in the format-string.

The format-string is read from left to right. When the first format specification is
found, the value of the first argument after the format-string is converted and output

snprintf

88 z/OS V2R1.0 Metal C Programming Guide and Reference

according to the format specification. The second format specification causes the
second argument after the format-string to be converted and output, and so on
through the end of the format-string. If there are more arguments than there are
format specifications, the extra arguments are evaluated and ignored. The results
are undefined if there are not enough arguments for all the format specifications.
The format specification is illustrated below.

Format Specification for sprintf()

�� %
flags width . precision h

hh
j
l
ll
L
t
z

type ��

Each field of the format specification is a single character or number signifying a
particular format option. The type character, which appears after the last optional
format field, determines whether the associated argument is interpreted as a
character, a string, a number, or pointer. The simplest format specification contains
only the percent sign and a type character (for example, %s).

The percent sign: If a percent sign (%) is followed by a character that has no
meaning as a format field, the character is simply copied to the buffer. For example,
to print a percent sign character, use %%.

The flag characters: The flag characters in Table 10 are used for the justification of
output and printing of thousands of grouping characters, signs, blanks,
decimal-points, octal prefixes, and hexadecimal prefixes. Note that more than one
flag can appear in a format specification. This is an optional field.

Table 10. Flag Characters for sprintf() Family

Flag Meaning Default

' The integer portion of the result of a
decimal conversion (%i,%d,%u, %f,%g or
%G) will be formatted with the thousands'
grouping characters.

No grouping.

- Left-justify the result within the field width. Right-justify.

+ Prefix the output value with a sign (+ or -) if
the output value is of a signed type.

Sign appears only for
negative signed values (-).

blank(' ') Prefix the output value with a blank if the
output value is signed and positive. The +
flag overrides the blank flag if both appear,
and a positive signed value will be output
with a sign.

No blank.

sprintf

Chapter 3. C functions available to Metal C programs 89

Table 10. Flag Characters for sprintf() Family (continued)

Flag Meaning Default

When used with the o, x, or X formats, the
flag prefixes any nonzero output value with
0, 0x, or 0X, respectively.

For o conversion, it increases the precision,
if necessary, to force the first digit of the
result to be a zero. If the value and precision
are both 0, a single 0 is printed.

For e, E, f, F, g , and G conversion specifiers,
the result always contains a decimal-point,
even if no digits follow the decimal-point.
Without this flag, a decimal-point appears in
the result of these conversions only if a digit
follows it.

For g and G conversion specifiers, do not
remove trailing zeros from the result as they
normally are. For other conversion
specifiers, the behavior is undefined.

No prefix.

0 When used with the d, i, o, u, x, X, e, E, f, F,
g , or G conversion specifiers, leading zeros
are used to pad to the field width. If the 0
and - flags both appear, the 0 flag is
ignored.

For d, i, o, u, x, and X conversion specifiers,
if a precision is specified, the 0 flag is
ignored.

If the 0 and ’ flags both appear, the
grouping characters are inserted before zero
padding. For other conversions, the behavior
is undefined.

Space padding.

The code point for the # character varies between the EBCDIC encoded character
sets. The Metal C runtime library expects the # character to use the code point for
encoded character set IBM-1047.

The # flag should not be used with c, d, i, u, s, or p types.

The Width of the Output: Definition of the width specification is as follows.

Width is a nonnegative decimal integer controlling the minimum number of
characters printed. If the number of characters in the output value is less than the
specified width, blanks are added on the left or the right (depending on whether
the — flag is specified) until the minimum width is reached.

Width never causes a value to be truncated; if the number of characters in the
output value is greater than the specified width, or width is not given, all characters
of the value are output (subject to the precision specification).

The width specification can be an asterisk (*); if it is, an argument from the
argument list supplies the value. The width argument must precede the value being
formatted in the argument list. This is an optional field.

sprintf

90 z/OS V2R1.0 Metal C Programming Guide and Reference

If format-string contains the %n$ form of conversion specification, width can be
indicated by the sequence *m$, where m is a decimal integer in the range
[1,NL_ARGMAX] giving the position of an integer argument in the argument list
containing the field width.

The Precision of the Output: Definition of the precision specification is as follows.

The precision specification is a nonnegative decimal integer preceded by a period. It
specifies the number of characters to be output, or the number of decimal places.
Unlike the width specification, the precision can cause truncation of the output
value.

The precision specification can be an asterisk (*); if it is, an argument from the
argument list supplies the value. The precision argument must precede the value
being formatted in the argument list. The precision field is optional.

If format-string contains the %n$ form of conversion specification, precision can be
indicated by the sequence *m$, where m is a decimal integer in the range
[1,NL_ARGMAX] giving the position of an integer argument in the argument list
containing the field precision.

The interpretation of the precision value and the default when the precision is
omitted depend upon the type, as shown in Table 11.

Table 11. Precision Argument in sprintf()

Type Meaning Default

d
i
o
u
x
X

Precision specifies the minimum number of
digits to be output. If the number of digits
in the argument is less than precision, the
output value is padded on the left with
zeros. The value is not truncated when the
number of digits exceeds precision.

Default precision is 1. If precision
is 0, or if the period (.) appears
without a number following it,
the precision is set to 0. When
precision is 0, conversion of the
value zero results in no
characters.

c No effect. The character is output.

s Precision specifies the maximum number of
characters to be output. Characters in excess
of precision are not output.

Characters are output until a
NULL character is encountered.

e
E
f
F

Precision specifies the number of digits to be
output after the decimal-point. The last digit
output is rounded.

Default precision is 6. If precision
is 0 or the period appears
without a number following it,
no decimal-point is output.

g
G

Precision specifies the maximum number of
significant digits output.

All significant digits are output.

Optional prefix: Used to indicate the size of the argument expected.

h A prefix with the integer types d, i, o, u, x, X means the integer is 16 bits
long.

hh Specifies that a following d, i, o, u, x, or X conversion specifier applies to a
signed char or unsigned char argument (the argument will have been
promoted according to the integer promotions, but its value shall be
converted to signed char or unsigned char before printing); or that a
following n conversion specifier applies to a pointer to a signed char
argument.

sprintf

Chapter 3. C functions available to Metal C programs 91

j Specifies that a following d, i, o, u, x, or X conversion specifier applies to
an intmax_t or uintmax_t argument; or that a following n conversion
specifier applies to a pointer to an intmax_t argument.

l A prefix with d, i, o, u, x, X, and n types that specifies that the argument is
a long int or unsigned long int.

ll A prefix with the integer types d, i, o, u, x, X means the integer is 64 bits
long.

L A prefix with e, E, f, g, or G types that specifies that the argument is long
double.

t Specifies that a following d, i, o, u, x, or X conversion specifier applies to a
ptrdiff_t or the corresponding unsigned type argument; or that a following
n conversion specifier applies to a pointer to a ptrdiff_t argument.

z Specifies that a following d, i, o, u, x, or X conversion specifier applies to a
size_t or the corresponding signed integer type argument; or that a
following n conversion specifier applies to a pointer to a signed integer
type corresponding to a size_t argument.

Table 12 below shows the meaning of the type characters used in the precision
argument.

Table 12. Type Characters and their Meanings

Type Argument Output Format

d, i Integer Signed decimal integer.

u Integer Unsigned decimal integer.

o Integer Unsigned octal integer.

x Integer Unsigned hexadecimal integer, using abcdef.

X Integer Unsigned hexadecimal integer, using ABCDEF.

c Character Single character.

s String Characters output up to the first NULL character (\0) or
until precision is reached.

n Pointer to integer Number of characters successfully output so far to the
stream or buffer; this value is stored in the integer whose
address is given as the argument.

p Pointer Pointer to void converted to a sequence of printable
characters. See the individual system reference guides for
the specific format.

sprintf

92 z/OS V2R1.0 Metal C Programming Guide and Reference

Table 12. Type Characters and their Meanings (continued)

Type Argument Output Format

f, F Double Signed value having the form [-]dddd.dddd, where dddd is
one or more decimal digits. The number of digits before the
decimal-point depends on the magnitude of the number.
The number of digits after the decimal-point is equal to the
requested precision. If the precision is explicitly zero and
no # is present, no decimal-point appears. If a
decimal-point appears, at least one digit appears before it.

Convert a double argument representing an infinity in
[+/-]inf: a plus or minus sign with the character sequence
inf, followed by a white space character (space, tab, or
newline), a NULL character (\0), or EOF.

Convert a double argument representing a NaN in one of
the styles:

v [+/-]nan(n) for a signaling nan.

v [+/-nanq(n)] for a quiet nan, where n is an integer and
1<= n<= INT_MAX-1.

The value of n is determined by the fraction bits of the
NaN argument value. For a signaling NaN value, NaN
fraction bits are reversed (left to right) to produce bits
(right to left) of an even integer value, 2*n. For a quiet NaN
value, NaN fraction bits are reversed (left to right) to
produce bits (right to left) of an odd integer value, 2*n-1.

The F conversion specifier produces INFe, NANS, or
NANQ instead of infQ, nans or, nanq respectively.

e, E Double Signed value having the form [-]d.dddde[sign]ddd:

v d is a single-decimal digit.

v dddd is one or more decimal digits.

v ddd is 2 or more decimal digits.

v sign is + or -.

If the precision is zero and no # flag is present, no
decimal-point appears. The conversion specifier produces a
number with E instead of e to introduce the exponent.

A double argument representing an infinity or NaN is
converted in the style of an f or F conversion specifier.

g, G Double Signed value output in f or e format (or in the F or E
format in the case of a G conversion specifier). The e or E
format is used only when the exponent of the value is less
than -4 or greater than or equal to the precision. Trailing
zeros are truncated, and the decimal-point appears only if
one or more digits follow it or a # flag is present.

A double argument representing an infinity or NaN is
converted in the style of an f or F conversion specifier.

Returned Value

If successful, sprintf() returns the number of characters output. The ending NULL
character is not counted.

sprintf

Chapter 3. C functions available to Metal C programs 93

If unsuccessful, sprintf() returns a negative value.

Related Information
v “stdio.h” on page 60
v “snprintf() — Format and write data” on page 87
v “sscanf() — Read and Format Data”

srand() — Set Seed for rand() Function
Format
#include <stdlib.h>

void srand(unsigned int seed);

General Description

The srand() function uses its argument seed as a seed for a new sequence of
pseudo-random numbers to be returned by subsequent calls to rand(). If srand() is
not called, the rand() seed is set as if srand(1) was called at program start. Any
other value for seed sets the generator to a different starting point. The rand()
function generates pseudo-random numbers.

Some people find it convenient to use the return value of the time() function as the
argument to srand(), as a way to ensure random sequences of random numbers.

Note: Use of srand() requires that an environment has been set up by using the
__cinit() function. When the function is called, GPR 12 must contain the
environment token created by the __cinit() call.

Returned Value

srand() returns no values.

Related Information
v “stdlib.h” on page 62
v “rand() — Generate random number” on page 85
v “rand_r() — Pseudo-random number generator” on page 86

sscanf() — Read and Format Data
Format

#include <stdio.h>

int sscanf(const char *__restrict__buffer, const char *__restrict__format-string, ...);

General Description

The sscanf() function reads data from buffer into the locations given by
argument-list. If the strings pointed to by buffer and format-string overlap, behavior
is undefined.

Each entry in the argument list must be a pointer to a variable of a type that
matches the corresponding conversion specification in format-string. If the types do
not match, the results are undefined.

sprintf

94 z/OS V2R1.0 Metal C Programming Guide and Reference

The format-string controls the interpretation of the argument list. The format-string
can contain multibyte characters beginning and ending in the initial shift state.

The format string pointed to by format-string can contain one or more of the
following:
v White space characters, as specified by isspace(), such as blanks and newline

characters. A white space character causes sscanf() to read, but not to store, all
consecutive white space characters in the input up to the next character that is
not white space. One white space character in format-string matches any
combination of white space characters in the input.

v Characters that are not white space, except for the percent sign character (%). A
non-white space character causes sscanf() to read, but not to store, a matching
non-white space character. If the next character in the input stream does not
match, the function ends.

v Conversion specifications which are introduced by the percent sign (%) or the
sequence (%n$) where n is a decimal integer in the range [1,NL_ARGMAX]. A
conversion specification causes sscanf() to read and convert characters in the
input into values of a conversion specifier. The value is assigned to an argument
in the argument list.

sscanf() reads format-string from left to right. Characters outside of conversion
specifications are expected to match the sequence of characters in the input stream;
the matched characters in the input stream are scanned but not stored. If a
character in the input stream conflicts with format-string, the function ends,
terminating with a “matching” failure. The conflicting character is left in the input
stream as if it had not been read.

When the first conversion specification is found, the value of the first input field is
converted according to the conversion specification and stored in the location
specified by the first entry in the argument list. The second conversion
specification converts the second input field and stores it in the second entry in the
argument list, and so on through the end of format-string.

When the %n$ conversion specification is found, the value of the input field is
converted according to the conversion specification and stored in the location
specified by the nth argument in the argument list. Numbered arguments in the
argument list can only be referenced once from format-string.

The format-string can contain either form of the conversion specification, that is, %
or %n$ but the two forms cannot be mixed within a single format-string except that
%% or %* can be mixed with the %n$ form.

An input field is defined as:
v All characters until a white space character (space, tab, or newline) is

encountered
v All characters until a character is encountered that cannot be converted

according to the conversion specification
v All characters until the field width is reached.

If there are too many arguments for the conversion specifications, the extra
arguments are evaluated but otherwise ignored. The results are undefined if there
are not enough arguments for the conversion specifications.

sscanf

Chapter 3. C functions available to Metal C programs 95

Syntax of Conversion Specification for sscanf()

�� %
* width h

hh
l
ll
L
j
t
z

conversion specifier ��

Each field of the conversion specification is a single character or a number
signifying a particular format option. The conversion specifier, which appears after
the last optional format field, determines whether the input field is interpreted as a
character, a string, or a number. The simplest conversion specification contains
only the percent sign and a conversion specifier (for example, %s).

Each field of the format specification is discussed in detail below.

Other than conversion specifiers, avoid using the percent sign (%), except to specify
the percent sign: %%. Currently, the percent sign is treated as the start of a
conversion specifier. Any unrecognized specifier is treated as an ordinary sequence
of characters. If, in the future, z/OS XL C/C++ permits a new conversion specifier,
it could match a section of your format string, be interpreted incorrectly, and result
in undefined behavior. See Table 13 on page 97 for a list of conversion specifiers.

An asterisk (*) following the percent sign suppresses assignment of the next input
field, which is interpreted as a field of the specified conversion specifier. The field is
scanned but not stored.

width is a positive decimal integer controlling the maximum number of characters
to be read. No more than width characters are converted and stored at the
corresponding argument.

Fewer than width characters are read if a white space character (space, tab, or
newline), or a character that cannot be converted according to the given format
occurs before width is reached.

The optional prefix l shows that you use the long version of the following
conversion specifier, while the prefix h indicates that the short version is to be used.
The corresponding argument should point to a long or double object (for the l
character), a long double object (for the L character), or a short object (with the h
character). The l and h modifiers can be used with the d, i, o, x, and u conversion
specifiers. The l and h modifiers are ignored if specified for any other conversion
specifier.

Optional prefix: Used to indicate the size of the argument expected.

h Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to
an argument with type pointer to short or unsigned short.

hh Specifies that a following d, i, o, u, x, X or n conversion specifier applies to
an argument with type pointer to signed char or unsigned char.

sscanf

96 z/OS V2R1.0 Metal C Programming Guide and Reference

j Specifies that a following d, i, o, u, x, X or n conversion specifier applies to
an argument with type pointer to intmax_t or uintmax_t.

l Specifies that a following e, E, f, F, g, or G conversion specifier applies to
an argument with type pointer to double.

ll Specifies that a following d, i, o, u, x, X or n conversion specifier applies to
an argument with type pointer to long long or unsigned long long.

L Specifies that a following e, E, f, g, or G conversion specifier applies to an
argument with type pointer to long double.

t Specifies that a following d, i, o, u, x, X or n conversion specifier applies to
an argument with type pointer to ptrdiff_t or the corresponding unsigned
type.

z Specifies that a following d, i, o, u, x, X or n conversion specifier applies to
an argument with type pointer to size_t or the corresponding signed
integer type.

The type characters and their meanings are in Table 13.

Table 13. Conversion Specifiers in sscanf()

Conversion
Specifier Type of Input Expected Type of Argument

d Decimal integer Pointer to int

o Octal integer Pointer to unsigned
int

x
X

Hexadecimal integer Pointer to unsigned
int

i Decimal, hexadecimal, or octal integer Pointer to int

u Unsigned decimal integer Pointer to unsigned
int

c Sequence of one or more characters as specified by
field width; white space characters that are
ordinarily skipped are read when %c is specified. No
terminating null is added.

Pointer to char large
enough for input
field.

s Like c, a sequence of bytes of type char (signed or
unsigned), except that white space characters are not
allowed, and a terminating null is always added.

Pointer to character
array large enough for
input field, plus a
terminating NULL
character (\0) that is
automatically
appended.

n No input read from stream or buffer. Pointer to int, into
which is stored the
number of characters
successfully read from
the stream or buffer
up to that point in the
call to either fscanf()
or to scanf().

p Pointer to void converted to series of characters. For
the specific format of the input, see the individual
system reference guides.

Pointer to void.

sscanf

Chapter 3. C functions available to Metal C programs 97

Table 13. Conversion Specifiers in sscanf() (continued)

Conversion
Specifier Type of Input Expected Type of Argument

[A non-empty sequence of bytes to be matched
against a set of expected bytes (the scanset), which
form the conversion specification. White space
characters that are ordinarily skipped are read when
%[is specified.

Consider the following situations:

[^bytes]. In this case, the scanset contains all bytes
that do not appear between the circumflex and the
right square bracket.

[]abc] or [^]abc.] In both these cases the right
square bracket is included in the scanset (in the first
case:]abc and in the second case, not]abc)

[a–z] In EBCDIC The – is in the scanset, the
characters b through y are not in the scanset; in
ASCII The – is not in the scanset, the characters b
through y are.

The code point for the square brackets ([and]) and
the caret (^) vary among the EBCDIC encoded
character sets. The default C locale expects these
characters to use the code points for encoded
character set Latin-1 / Open Systems 1047.
Conversion proceeds one byte at a time: there is no
conversion to wide characters.

Pointer to the initial
byte of an array of
char, signed char, or
unsigned char large
enough to accept the
sequence and a
terminating byte,
which will be added
automatically.

e
E
f
F
g
G

Floating-point value consisting of an optional sign (+
or -), a series of one or more decimal digits possibly
containing a decimal-point, and an optional
exponent (e or E) followed by a possibly signed
integer value.

Pointer to float

The format string passed to sscanf() must be encoded as IBM-1047.

To read strings not delimited by space characters, substitute a set of characters in
square brackets ([]) for the s (string) conversion specifier. The corresponding input
field is read up to the first character that does not appear in the bracketed
character set. If the first character in the set is a logical not (¬), the effect is
reversed: the input field is read up to the first character that does appear in the
rest of the character set.

To store a string without storing an ending NULL character (\0), use the
specification %ac, where a is a decimal integer. In this instance, the c conversion
specifier means that the argument is a pointer to a character array. The next a
characters are read from the input stream into the specified location, and no NULL
character is added.

The input for a %x conversion specifier is interpreted as a hexadecimal number.

The sscanf() function scans each input field character by character. It might stop
reading a particular input field either before it reaches a space character, when the
specified width is reached, or when the next character cannot be converted as

sscanf

98 z/OS V2R1.0 Metal C Programming Guide and Reference

specified. When a conflict occurs between the specification and the input character,
the next input field begins at the first unread character. The conflicting character, if
there is one, is considered unread and is the first character of the next input field
or the first character in subsequent read operations on the input stream.

The sscanf family functions match e, E, f, F, g or, G conversion specifiers to
floating-point number substrings in the input stream. The sscanf family functions
convert each input substring matched by an e, E, f, F, g, or G conversion specifier
to a float, double or long double value depending on the size modifier before the
e, E, f, F, g, or G conversion specifier.

Many z/OS Metal C formatted input functions, including the sscanf family of
functions, use the IEEE binary floating-point format and recognize special infinity
and NaN floating-point number input sequences.
v The special sequence for infinity input is [+/-]inf or [+/-]INF, where + or - is

optional.
v The special sequence of NaN input is either [+/-]nan(n) for a signaling nan or

[+/-nanq(n)] for a quiet nan, where n is an integer and 1<= n <= INT_MAX-1. If
(n) is omitted, n is assumed to be 1. The value of n determines what IEEE binary
floating-point NaN fraction bits are produced by the formatted input functions.
For a signaling NaN, these functions produce NaN fraction bits (left to right) by
reversing the bits (right to left) of the even integer value 2*n. For a quiet NaN,
they produce NaN fraction bits (left to right) by reversing the bits (right to left)
of the odd integer value 2*n-1.

Returned Value

The sscanf() function returns the number of input items that were successfully
matched and assigned. The returned value does not include conversions that were
performed but not assigned (for example, suppressed assignments). The functions
return EOF if there is an input failure before any conversion, or if EOF is reached
before any conversion. Thus a returned value of 0 means that no fields were
assigned: there was a matching failure before any conversion.

Related Information
v “stdio.h” on page 60
v “snprintf() — Format and write data” on page 87
v “sprintf() — Format and Write Data” on page 88
v “vsnprintf() — Format and print data to fixed length buffer” on page 120
v “vsscanf() — Format Input of a STDARG Argument List” on page 121

strcat() — Concatenate Strings
Format
#include <string.h>

char *strcat(char * __restrict__string1, const char * __restrict__string2);

General Description

The strcat() built-in function concatenates string2 with string1 and ends the
resulting string with the NULL character. In other words, strcat() appends a copy
of the string pointed to by string2—including the terminating NULL byte— to the
end of a string pointed to by string1, with its last byte (that is, the terminating
NULL byte of string1) overwritten by the first byte of the appended string.

sscanf

Chapter 3. C functions available to Metal C programs 99

Do not use a literal string for a string1 value, although string2 may be a literal
string.

If the storage of string1 overlaps the storage of string2, the behavior is undefined.

Returned Value

The strcat() built-in function returns the value of string1, the concatenated string.

Related Information
v “string.h” on page 63
v “strchr() — Search for Character”
v “strcmp() — Compare Strings” on page 101
v “strcpy() — Copy String” on page 101
v “strcspn() — Compare Strings” on page 102
v “strncat() — Concatenate Strings” on page 103

strchr() — Search for Character
Format
#include <string.h>

char *strchr(const char *string, int c);

General Description

The strchr() built-in function finds the first occurrence of c converted to char, in the
string *string. The character c can be the NULL character (\0); the ending NULL
character of string is included in the search.

The strchr() function operates on NULL-terminated strings. The string argument to
the function must contain a NULL character (\0) marking the end of the string.

Returned Value

If successful, strchr() returns a pointer to the first occurrence of c (converted to a
character) in string.

If the character is not found, strchr() returns a NULL pointer.

Related Information
v “string.h” on page 63
v “memchr() — Search buffer” on page 82
v “strcat() — Concatenate Strings” on page 99
v “strcmp() — Compare Strings” on page 101
v “strcpy() — Copy String” on page 101
v “strcspn() — Compare Strings” on page 102
v “strncmp() — Compare Strings” on page 104
v “strpbrk() — Find Characters in String” on page 105
v “strrchr() — Find Last Occurrence of Character in String” on page 106
v “strspn() — Search String” on page 106

strcat

100 z/OS V2R1.0 Metal C Programming Guide and Reference

strcmp() — Compare Strings
Format
#include <string.h>

int strcmp(const char *string1, const char *string2);

General Description

The strcmp() built-in function compares the string pointed to by string1 to the
string pointed to by string2 The string arguments to the function must contain a
NULL character (\0) marking the end of the string.

The relation between the strings is determined by subtracting: string1[i] - string2[i],
as i increases from 0 to strlen of the smaller string. The sign of a nonzero return
value is determined by the sign of the difference between the values of the first
pair of bytes (both interpreted as type unsigned char) that differ in the strings
being compared. This function is not locale-sensitive.

Returned Value

strcmp() returns a value indicating the relationship between the strings, as listed
below.

Value Meaning

< 0 String pointed to by string1 less than string pointed to by string2

= 0 String pointed to by string1 equivalent to string pointed to by string2

> 0 String pointed to by string1 greater than string pointed to by string2

Related Information
v “string.h” on page 63
v “memcmp() — Compare bytes” on page 83
v “strcspn() — Compare Strings” on page 102
v “strncmp() — Compare Strings” on page 104
v “strpbrk() — Find Characters in String” on page 105
v “strrchr() — Find Last Occurrence of Character in String” on page 106
v “strspn() — Search String” on page 106

strcpy() — Copy String
Format
#include <string.h>

char *strcpy(char * __restrict__string1, const char * __restrict__string2);

General Description

The strcpy() built-in function copies string2, including the ending NULL character,
to the location specified by string1. The string2 argument to strcpy() must contain a
NULL character (\0) marking the end of the string. You cannot use a literal string
for a string1 value, although string2 may be a literal string. If the two objects
overlap, the behavior is undefined.

strcmp

Chapter 3. C functions available to Metal C programs 101

Returned Value

The strcpy() function returns the value of string1.

Related Information
v “string.h” on page 63
v “memcpy() — Copy buffer” on page 83
v “strcat() — Concatenate Strings” on page 99
v “strchr() — Search for Character” on page 100
v “strcmp() — Compare Strings” on page 101
v “strcspn() — Compare Strings”
v “strncpy() — Copy String” on page 105
v “strpbrk() — Find Characters in String” on page 105
v “strrchr() — Find Last Occurrence of Character in String” on page 106
v “strspn() — Search String” on page 106

strcspn() — Compare Strings
Format
#include <string.h>

size_t strcspn(const char *string1, const char *string2);

General Description

The strcspn() function computes the length of the initial portion of the string
pointed to by string1 that contains no characters from the string pointed to by
string2.

Returned Value

The strcspn() function returns the calculated length of the initial portion found.

Related Information
v “string.h” on page 63
v “strcat() — Concatenate Strings” on page 99
v “strchr() — Search for Character” on page 100
v “strcmp() — Compare Strings” on page 101
v “strcpy() — Copy String” on page 101
v “strncmp() — Compare Strings” on page 104
v “strpbrk() — Find Characters in String” on page 105
v “strrchr() — Find Last Occurrence of Character in String” on page 106
v “strspn() — Search String” on page 106

strdup() — Duplicate a String
Format
#include <string.h>

char *strdup(const char *string);

General Description

The strdup() function creates a duplicate of the string pointed to by string.

strcpy

102 z/OS V2R1.0 Metal C Programming Guide and Reference

Note: Use of this function requires that an environment has been set up by using
the __cinit() function. When the function is called, GPR 12 must contain the
environment token created by the __cinit() call.

Returned Value

If successful, strdup() returns a pointer to a new string which is a duplicate of
string.

Otherwise, strdup() returns a NULL pointer.

Note: The caller of strdup() should free the storage obtained for the string.

Related Information
v “string.h” on page 63
v “free() — Free a block of storage” on page 76
v “malloc() — Reserve storage block” on page 81

strlen() — Determine String Length
Format
#include <string.h>

size_t strlen(const char *string);

General Description

The strlen() built-in function determines the length of string pointed to by string,
excluding the terminating NULL character.

Returned Value

The strlen() function returns the length of string.

Related Information
v “string.h” on page 63
v “strncat() — Concatenate Strings”
v “strncmp() — Compare Strings” on page 104
v “strncpy() — Copy String” on page 105

strncat() — Concatenate Strings
Format
#include <string.h>

char *strncat(char * __restrict__string1,
const char * __restrict__string2, size_t count);

General Description

The strncat() built-in function appends the first count characters of string2 to string1
and ends the resulting string with a NULL character (\0). If count is greater than
the length of string2, strncat() appends only the maximum length of string2 to
string1. The first character of the appended string overwrites the terminating
NULL character of the string pointed to by string1.

strdup

Chapter 3. C functions available to Metal C programs 103

If copying takes place between overlapping objects, the behavior is undefined.

Returned Value

The strncat() function returns the value string1, the concatenated string.

Related Information
v “string.h” on page 63
v “strcat() — Concatenate Strings” on page 99
v “strncmp() — Compare Strings”
v “strncpy() — Copy String” on page 105
v “strpbrk() — Find Characters in String” on page 105
v “strrchr() — Find Last Occurrence of Character in String” on page 106
v “strspn() — Search String” on page 106

strncmp() — Compare Strings
Format
#include <string.h>

int strncmp(const char *string1, const char *string2, size_t count);

General Description

The strncmp() built-in function compares at most the first count characters of the
string pointed to by string1 to the string pointed to by string2.

The string arguments to the function should contain a NULL character (\0)
marking the end of the string.

The relation between the strings is determined by the sign of the difference
between the values of the leftmost first pair of characters that differ. The values
depend on character encoding. This function is not locale sensitive.

Returned Value

The strncmp() function returns a value indicating the relationship between the
substrings, as follows:

Value Meaning

< 0 String pointed to by substring1 less than string pointed to by substring2

= 0 String pointed to by substring1 equivalent to string pointed to by substring2

> 0 String pointed to by substring1 greater than string pointed to by substring2

Related Information
v “string.h” on page 63
v “memcmp() — Compare bytes” on page 83
v “strcmp() — Compare Strings” on page 101
v “strcspn() — Compare Strings” on page 102
v “strncat() — Concatenate Strings” on page 103
v “strncpy() — Copy String” on page 105
v “strpbrk() — Find Characters in String” on page 105
v “strrchr() — Find Last Occurrence of Character in String” on page 106
v “strspn() — Search String” on page 106

strncat

104 z/OS V2R1.0 Metal C Programming Guide and Reference

strncpy() — Copy String
Format
#include <string.h>

char *strncpy(char * __restrict__string1,
const char * __restrict__string2, size_t count);

General Description

The strncpy() built-in function copies at most count characters of string2 to string1.
If count is less than or equal to the length of string2, a NULL character (\0) is not
appended to the copied string. If count is greater than the length of string2, the
string1 result is padded with NULL characters (\0) up to length count.

If copying takes place between objects that overlap, the behavior is undefined.

Returned Value

The strncpy() function returns string1.

Related Information
v “string.h” on page 63
v “memcpy() — Copy buffer” on page 83
v “strcpy() — Copy String” on page 101
v “strncat() — Concatenate Strings” on page 103
v “strncmp() — Compare Strings” on page 104
v “strpbrk() — Find Characters in String”
v “strrchr() — Find Last Occurrence of Character in String” on page 106
v “strspn() — Search String” on page 106

strpbrk() — Find Characters in String
Format
#include <string.h>

char *strpbrk(const char *string1, const char *string2);

General Description

The strpbrk() function locates the first occurrence in the string pointed to by string1
of any character from the string pointed to by string2.

Returned Value

If successful, strpbrk() returns a pointer to the character.

If string1 and string2 have no characters in common, strpbrk() returns a NULL
pointer.

Related Information
v “string.h” on page 63
v “strchr() — Search for Character” on page 100
v “strcspn() — Compare Strings” on page 102
v “strncmp() — Compare Strings” on page 104
v “strrchr() — Find Last Occurrence of Character in String” on page 106

strncpy

Chapter 3. C functions available to Metal C programs 105

v “strspn() — Search String”

strrchr() — Find Last Occurrence of Character in String
Format
#include <string.h>

char *strrchr(const char *string, int c);

General Description

The strrchr() function finds the last occurrence of c (converted to a char) in string.
The ending NULL character is considered part of the string.

Returned Value

If successful, strrchr() returns a pointer to the last occurrence of c in string.

If the given character is not found, strrchr() returns a NULL pointer.

Related Information
v “string.h” on page 63
v “memchr() — Search buffer” on page 82
v “strchr() — Search for Character” on page 100
v “strcspn() — Compare Strings” on page 102
v “strncmp() — Compare Strings” on page 104
v “strpbrk() — Find Characters in String” on page 105
v “strspn() — Search String”

strspn() — Search String
Format
#include <string.h>

size_t strspn(const char *string1, const char *string2);

General Description

The strspn() function calculates the length of the maximum initial portion of the
string pointed to by string1 that consists entirely of the characters contained in the
string pointed to by string2.

Returned Value

The strspn() function returns the length of the substring found.

Related Information
v “string.h” on page 63
v “strcat() — Concatenate Strings” on page 99
v “strchr() — Search for Character” on page 100
v “strcmp() — Compare Strings” on page 101
v “strcpy() — Copy String” on page 101
v “strcspn() — Compare Strings” on page 102
v “strpbrk() — Find Characters in String” on page 105
v “strrchr() — Find Last Occurrence of Character in String”

strpbrk

106 z/OS V2R1.0 Metal C Programming Guide and Reference

strstr() — Locate Substring
Format
#include <string.h>

char *strstr(const char *string1, const char *string2);

General Description

The strstr() function finds the first occurrence of the string pointed to by string2
(excluding the NULL character) in the string pointed to by string1.

Returned Value

If successful, strstr() returns a pointer to the beginning of the first occurrence of
string2 in string1.

If string2 does not appear in string1, strstr() returns NULL.

If string2 points to a string with zero length, strstr() returns string1.

Related Information
v “string.h” on page 63
v “strchr() — Search for Character” on page 100
v “strcmp() — Compare Strings” on page 101
v “strcspn() — Compare Strings” on page 102
v “strncmp() — Compare Strings” on page 104
v “strpbrk() — Find Characters in String” on page 105
v “strrchr() — Find Last Occurrence of Character in String” on page 106
v “strspn() — Search String” on page 106

strtod — Convert Character String to Double
Format
#include <stdlib.h>
double strtod(const char * __restrict__nptr, char ** __restrict__endptr);

General Description

The strtod() function converts part of a character string, pointed to by nptr, to a
double. The parameter nptr points to a sequence of characters that can be
interpreted as a numerical value of the type double.

The strtod() function breaks the string into three parts:
1. An initial, possibly empty, sequence of white-space characters, as specified by

isspace().
2. A subject sequence interpreted as a floating-point constant or representing

infinity or a NAN.
3. A final string of one or more unrecognized characters, including the

terminating null byte of the input string.

The subject string is the longest string that matches the expected form.

The expected form of the subject sequence is an optional plus or minus sign with
one of the following parts:

strstr

Chapter 3. C functions available to Metal C programs 107

v A non-empty sequence of decimal digits optionally containing a radix character
followed by an optional exponent part. A radix character is the character that
separates the integer part of a number from the fractional part.

v A 0x or 0X, a non-empty sequence of hexadecimal digits optionally containing a
radix character, a base 2 decimal exponent part with a p or P as prefix, a plus or
minus sign, and then a sequence of at least one decimal digit, for example,
[-]0xh.hhhhp+/-d.

v An INF, ignoring case.
v One of NANQ or NANQ(n), ignoring case.
v One of NANS or NANS(n), ignoring case.
v One of NAN or NAN(n), ignoring case.

See “sscanf() — Read and Format Data” on page 94 for a description of special
infinity and NAN sequences recognized by z/OS Metal C.

The pointer to the last string that was successfully converted is stored in the object
pointed to by endptr, if endptr is not a NULL pointer. If the subject string is empty
or it does not have the expected form, no conversion is performed. The value of
nptr is stored in the object pointed to by endptr.

Returned Value

If successful, strtod() returns the value of the floating-point number in IEEE Binary
Floating-Point format.

In an overflow, strtod() returns +/-HUGE_VAL. In an underflow, it returns 0. If no
conversion is performed, strtod() returns 0.

Related Information
v “stdlib.h” on page 62
v “atoi() — Convert character string to integer” on page 70
v “atol() — Convert character string to long” on page 70
v “sscanf() — Read and Format Data” on page 94
v “strtol() — Convert Character String to Long” on page 111
v “strtof — Convert Character String to Float”
v “strtold — Convert Character String to Long Double” on page 113
v “strtoul() — Convert String to Unsigned Integer” on page 115
v “vsscanf() — Format Input of a STDARG Argument List” on page 121

strtof — Convert Character String to Float
Format
#include <stdlib.h>
float strtof(const char * __restrict__nptr, char ** __restrict__endptr);

General Description

The strtof() function converts part of a character string, pointed to by nptr, to a
float. The parameter nptr points to a sequence of characters that can be interpreted
as a numerical value of the type float.

The strtof() function breaks the string into three parts:
1. An initial, possibly empty, sequence of white-space characters, as specified by

isspace().

strtod

108 z/OS V2R1.0 Metal C Programming Guide and Reference

2. A subject sequence interpreted as a floating-point constant or representing
infinity or a NAN.

3. A final string of one or more unrecognized characters, including the
terminating null byte of the input string.

The subject string is the longest string that matches the expected form.

The expected form of the subject sequence is an optional plus or minus sign with
one of the following parts:
v A non-empty sequence of decimal digits optionally containing a radix character

followed by an optional exponent part. A radix character is the character that
separates the integer part of a number from the fractional part.

v A 0x or 0X, a non-empty sequence of hexadecimal digits optionally containing a
radix character, a base 2 decimal exponent part with a p or P as prefix, a plus or
minus sign, and then a sequence of at least one decimal digit, for example,
[-]0xh.hhhhp+/-d.

v An INF, ignoring case.
v One of NANQ or NANQ(n), ignoring case.
v One of NANS or NANS(n), ignoring case.
v One of NAN or NAN(n), ignoring case.

In z/OS Metal C, represent the radix character as a period (.).

See “sscanf() — Read and Format Data” on page 94 for a description of special
infinity and NAN sequences recognized by z/OS Metal C.

The pointer to the last string that was successfully converted is stored in the object
pointed to by endptr, if endptr is not a NULL pointer. If the subject string is empty
or it does not have the expected form, no conversion is performed. The value of
nptr is stored in the object pointed to by endptr.

Returned Value

If successful, strtof() returns the value of the floating-point number in IEEE Binary
Floating-Point format.

In an overflow, strtof() returns +/-HUGE_VALF. In an underflow, it returns 0. If no
conversion is performed, strtof() returns 0.

Related Information
v “stdlib.h” on page 62
v “atoi() — Convert character string to integer” on page 70
v “atol() — Convert character string to long” on page 70
v “sscanf() — Read and Format Data” on page 94
v “strtod — Convert Character String to Double” on page 107
v “strtol() — Convert Character String to Long” on page 111
v “strtold — Convert Character String to Long Double” on page 113
v “strtoul() — Convert String to Unsigned Integer” on page 115
v “vsscanf() — Format Input of a STDARG Argument List” on page 121

strtof

Chapter 3. C functions available to Metal C programs 109

strtok() — Tokenize String
Format
#include <string.h>

char *strtok(char * __restrict__string1, const char * __restrict__string2);

General Description

The strtok() function breaks a character string, pointed to by string, into a sequence
of tokens. The tokens are separated from one another by the characters in the
string pointed to by string2.

The token starts with the first character not in the string pointed to by string2. If
such a character is not found, there are no tokens in the string. strtok() returns a
NULL pointer. The token ends with the first character contained in the string
pointed to by string2. If such a character is not found, the token ends at the
terminating NULL character. Subsequent calls to strtok() will return the NULL
pointer. If such a character is found, then it is overwritten by a NULL character,
which terminates the token.

If the next call to strtok() specifies a NULL pointer for string1, the tokenization
resumes at the first character following the found and overwritten character from
the previous call. For example:
/* Here are two calls */
strtok(string," ")
strtok(NULL," ")

/* Here is the string they are processing */
abc defg hij

first call finds ↑
↑ second call starts

Note: To use the strtok() function, set up an environment by using the __cinit()
function. When the function is called, GPR 12 must contain the environment token
created by the __cinit() call.

Returned Value

The first time strtok() is called, it returns a pointer to the first token in string1. In
later calls with the same token string, strtok() returns a pointer to the next token in
the string. A NULL pointer is returned when there are no more tokens. All tokens
are NULL-terminated.

Related Information
v “string.h” on page 63
v “strcat() — Concatenate Strings” on page 99
v “strchr() — Search for Character” on page 100
v “strcmp() — Compare Strings” on page 101
v “strcpy() — Copy String” on page 101
v “strcspn() — Compare Strings” on page 102
v “strspn() — Search String” on page 106

strtok

110 z/OS V2R1.0 Metal C Programming Guide and Reference

strtok_r() — Split String into Tokens
Format
#define _XOPEN_SOURCE 500
#include <string.h>

char *strtok_r(char *s, const char *sep, char **lasts);

General Description

The function strtok_r() considers the NULL-terminated string s as a sequence of
zero or more text tokens separated by spans of one or more characters from the
separator string sep. The argument lasts points to a user-provided pointer which
points to stored information necessary for strtok_r() to continue scanning the same
string.

In the first call to strtok_r(), s points to a NULL-terminated string, sep to a
NULL-terminated string of separator characters and the value pointed to by lasts is
ignored. The function strtok_r() returns a pointer to the first character of the first
token, writes a NULL character into s immediately following the returned token,
and updates the pointer to which lasts points.

In subsequent calls, s is a NULL pointer and lasts will be unchanged from the
previous call so that subsequent calls will move through the string s, returning
successive tokens until no tokens remain. The separator string sep may be different
from call to call. When no token remains in s, a NULL pointer is returned.

Note: To use the strtok_r() function, set up an environment by using the __cinit()
function. When the function is called, GPR 12 must contain the environment token
created by the __cinit() call.

Returned Value

If successful, strtok_r() returns a pointer to the token found.

When no token is found, strtok_r() returns a NULL pointer.

Related Information
v “string.h” on page 63
v “strcat() — Concatenate Strings” on page 99
v “strchr() — Search for Character” on page 100
v “strcmp() — Compare Strings” on page 101
v “strcpy() — Copy String” on page 101
v “strcspn() — Compare Strings” on page 102
v “strspn() — Search String” on page 106

strtol() — Convert Character String to Long
Format
#include <stdlib.h>

long int strtol(const char * __restrict__nptr,
char ** __restrict__endptr, int base);

strtok_r

Chapter 3. C functions available to Metal C programs 111

General Description

The strtol() function converts nptr, a character string, to a long int value.

The function decomposes the entire string into three parts:
1. A sequence of white space characters as defined by the IBM-1047 codepage.
2. A sequence of characters interpreted as integer in some base notation. This is

the subject sequence.
3. A sequence of unrecognized characters.

The base notation is determined by base, if base is greater than zero. If base is zero,
the base notation is determined by the format of the sequence of characters that
follow an optional plus—or optional minus—sign.

10 Sequence starts with nonzero decimal digit.

8 Sequence starts with 0, followed by a sequence of digits with values from 0
to 7.

16 Sequence starts with either 0x or 0X, followed by digits, and letters A
through F or a through f.

If the base is greater than zero, the subject sequence contains decimal digits and
letters, possibly preceded by either a plus or a minus sign. The letters a (or A)
through z (or Z) represent values from 10 through 36, but only those letters whose
value is less than the value of the base are allowed.

When you use the strtol() function, nptr should point to a string with the following
form:

��
white space +

-
0
0x
0X

digits
��

The pointer to the converted characters, even if conversion was unsuccessful, is
stored in the object pointed to by endptr, if endptr is not a NULL pointer.

Returned Value

If successful, strtol() returns the converted long int value.

If unsuccessful, strtol() returns 0 if no conversion could be performed. If the correct
value is outside the range of representable values, strtol() returns LONG_MAX or
LONG_MIN, according to the sign of the value. If the value of base is not supported,
strtol() returns 0.

Related Information
v “stdlib.h” on page 62
v “atoi() — Convert character string to integer” on page 70
v “atol() — Convert character string to long” on page 70
v “atoll() — Convert character string to signed long long” on page 71
v “sscanf() — Read and Format Data” on page 94

strtol

112 z/OS V2R1.0 Metal C Programming Guide and Reference

v “strtoul() — Convert String to Unsigned Integer” on page 115

strtold — Convert Character String to Long Double
Format
#include <stdlib.h>
long double strtold(const char *__restrict__ nptr, char **__restrict__ endptr);

General Description

The strtold() function converts part of a character string, pointed to by nptr, to long
double. The parameter nptr points to a sequence of characters that can be
interpreted as a numerical value of the type long double.

The strtold() function breaks the string into three parts:
1. An initial, possibly empty, sequence of white-space characters, as specified by

isspace().
2. A subject sequence interpreted as a floating-point constant or representing

infinity or a NAN.
3. A final string of one or more unrecognized characters, including the

terminating null byte of the input string.

The function then attempts to convert the subject string into the floating-point
number, and returns the result.

The expected form of the subject sequence is an optional plus or minus sign with
one of the following parts:
v A non-empty sequence of decimal digits optionally containing a radix character

followed by an optional exponent part. A radix character is the character that
separates the integer part of a number from the fractional part.

v A 0x or 0X, a non-empty sequence of hexadecimal digits optionally containing a
radix character, a base 2 decimal exponent part with a p or P as prefix, a plus or
minus sign, and then a sequence of at least one decimal digit, for example,
[-]0xh.hhhhp+/-d.

v An INF, ignoring case.
v One of NANQ or NANQ(n), ignoring case.
v One of NANS or NANS(n), ignoring case.
v One of NAN or NAN(n), ignoring case.

See “sscanf() — Read and Format Data” on page 94 for a description of special
infinity and NAN sequences recognized by z/OS Metal C.

The pointer to the last string that was successfully converted is stored in the object
pointed to by endptr, if endptr is not a NULL pointer. If the subject string is empty
or it does not have the expected form, no conversion is performed. The value of
nptr is stored in the object pointed to by endptr.

Returned Value

If successful, strtold() returns the value of the floating-point number in IEEE
Binary Floating-Point format.

In an overflow, strtold() returns +/-HUGE_VAL. In an underflow, it returns 0. If no
conversion is performed, strtold() returns 0.

strtol

Chapter 3. C functions available to Metal C programs 113

Related Information
v “stdlib.h” on page 62
v “atoi() — Convert character string to integer” on page 70
v “atol() — Convert character string to long” on page 70
v “sscanf() — Read and Format Data” on page 94
v “strtod — Convert Character String to Double” on page 107
v “strtof — Convert Character String to Float” on page 108
v “strtol() — Convert Character String to Long” on page 111
v “strtoul() — Convert String to Unsigned Integer” on page 115
v “vsscanf() — Format Input of a STDARG Argument List” on page 121

strtoll() — Convert String to Signed Long Long
Format
#include <stdlib.h>

long long strtoll(const char * __restrict__ nptr,
char ** __restrict__ endptr, int base);

Compile Requirement: Use of this function requires the long long data type. See
z/OS XL C/C++ Language Reference for information about how to make long long
available.

General Description

The strtoll() function converts nptr, a character string, to a signed long long value.

The function decomposes the entire string into three parts:
1. A sequence of white space characters as defined by the IBM-1047 codepage.
2. A sequence of characters interpreted as an unsigned integer in some base

notation. This is the subject sequence.
3. A sequence of unrecognized characters.

The base notation is determined by base, if base is greater than zero. If base is zero,
the base notation is determined by the format of the sequence of characters that
follow an optional plus or optional minus sign.

10 Sequence starts with nonzero decimal digit.

8 Sequence starts with 0, followed by a sequence of digits with values from 0
to 7.

16 Sequence starts with either 0x or 0X, followed by digits, and letters A
through F or a through f.

If the base is greater than zero, the subject sequence contains decimal digits and
letters, possibly preceded by either a plus or a minus sign. The letters a (or A)
through z (or Z) represent values from 10 through 36, but only those letters whose
value is less than the value of the base are allowed.

When you are using strtoll(), nptr should point to a string with the following form:

strtold

114 z/OS V2R1.0 Metal C Programming Guide and Reference

��
white space +

-
0
0x
0X

digits
��

The pointer to the converted characters, even if conversion was unsuccessful, is
stored in the object pointed to by endptr, if endptr is not a NULL pointer.

Returned Value

If successful, strtoll() returns the converted signed long long value, represented in
the string.

If unsuccessful, strtoll() returns 0 if no conversion could be performed. If the
correct value is outside the range of representable values, strtoll() returns
LLONG_MAX (LONGLONG_MAX) or LLONG_MIN (LONGLONG_MIN), according to the sign of the
value. If the value of base is not supported, strtoll() returns 0.

Related Information
v “stdlib.h” on page 62
v “atoi() — Convert character string to integer” on page 70
v “atol() — Convert character string to long” on page 70
v “atoll() — Convert character string to signed long long” on page 71
v “sscanf() — Read and Format Data” on page 94
v “strtoul() — Convert String to Unsigned Integer”

strtoul() — Convert String to Unsigned Integer
Format
#include <stdlib.h>

unsigned long int strtoul(const char * __restrict__ string1,
char ** __restrict__ string2, int base);

General Description

The strtoul() function converts string1, a character string, to an unsigned long int
value.

The function decomposes the entire string into three parts:
1. A sequence of white space characters as defined by the IBM-1047 codepage.
2. A sequence of characters interpreted as an unsigned integer in some base

notation. This is the subject sequence.
3. A sequence of unrecognized characters.

The base notation is determined by base, if base is greater than zero. If base is zero,
the base notation is determined by the format of the sequence of characters that
follow an optional plus or optional minus sign.

10 Sequence starts with nonzero decimal digit.

8 Sequence starts with 0, followed by a sequence of digits with values from 0
to 7.

strtoll

Chapter 3. C functions available to Metal C programs 115

16 Sequence starts with either 0x or 0X, followed by digits, and letters A
through F or a through f.

If the base is greater than zero, the subject sequence contains decimal digits and
letters, possibly preceded by either a plus or a minus sign. The letters a (or A)
through z (or Z) represent values from 10 through 36, but only those letters whose
value is less than the value of the base are allowed. The function stops reading the
string at the first character that it cannot recognize as part of a number. This
character can be the first numeric character greater than or equal to the base. The
strtoul() function sets string2 to point to the end of the resulting output string if a
conversion is performed and provided that string2 is not a NULL pointer.

When you are using the strtoul() function, string1 should point to a string with the
following form:

��
white space +

-
0
0x
0X

digits
��

If base is in the range of 2-36, it becomes the base of the number. If base is 0, the
prefix determines the base (8, 16, or 10): the prefix 0 means base 8; the prefix 0x or
0X means base 16; using any other digit without a prefix means decimal.

The pointer to the converted characters, even if conversion was unsuccessful, is
stored in the object pointed to by string2, if string2 is not a NULL pointer.

Returned Value

If successful, strtoul() returns the converted unsigned long int value, represented in
the string.

If unsuccessful, strtoul() returns 0 if no conversion could be performed. If the
correct value is outside the range of representable values, strtoul() returns
ULONG_MAX. If the value of base is not supported, strtoul() returns 0.

Related Information
v “stdlib.h” on page 62
v “atoi() — Convert character string to integer” on page 70
v “atol() — Convert character string to long” on page 70
v “atoll() — Convert character string to signed long long” on page 71
v “sscanf() — Read and Format Data” on page 94
v “strtol() — Convert Character String to Long” on page 111

strtoull() — Convert String to Unsigned Long Long
Format
#include <stdlib.h>

unsigned long long strtoull(register const char * __restrict__ nptr,
char ** __restrict__ endptr, int base);

strtoul

116 z/OS V2R1.0 Metal C Programming Guide and Reference

Compile Requirement: Use of this function requires the long long data type. See
z/OS XL C/C++ Language Reference for information about how to make long long
available.

General Description

The strtoull() function converts nptr, a character string, to an unsigned long long
value.

The function decomposes the entire string into three parts:
1. A sequence of white space characters as defined by the IBM-1047 codepage.
2. A sequence of characters interpreted as an unsigned integer in some base

notation. This is the subject sequence.
3. A sequence of unrecognized characters.

The base notation is determined by base, if base is greater than zero. If base is zero,
the base notation is determined by the format of the sequence of characters that
follow an optional plus or optional minus sign.

10 Sequence starts with nonzero decimal digit.

8 Sequence starts with 0, followed by a sequence of digits with values from 0
to 7.

16 Sequence starts with either 0x or 0X, followed by digits, and letters A
through F or a through f.

If the base is greater than zero, the subject sequence contains decimal digits and
letters, possibly preceded by either a plus or a minus sign. The letters a (or A)
through z (or Z) represent values from 10 through 36, but only those letters whose
value is less than the value of the base are allowed. The function stops reading the
string at the first character that it cannot recognize as part of a number. This
character can be the first numeric character greater than or equal to the base. The
strtoull() function sets endptr to point to the end of the resulting output string if a
conversion is performed and provided that endptr is not a NULL pointer.

When you are using the strtoull() function, nptr should point to a string with the
following form:

��
white space +

-
0
0x
0X

digits
��

If base is in the range of 2-36, it becomes the base of the number. If base is 0, the
prefix determines the base (8, 16 or 10): the prefix 0 means base 8; the prefix 0x or
0X means base 16; using any other digit without a prefix means decimal.

The pointer to the converted characters, even if conversion was unsuccessful, is
stored in the object pointed to by endptr, if endptr is not a NULL pointer.

strtoull

Chapter 3. C functions available to Metal C programs 117

Returned Value

If successful, strtoull() returns the converted unsigned long long value, represented
in the string.

If unsuccessful, strtoull() returns 0 if no conversion could be performed. If the
correct value is outside the range of representable values, strtoull() returns
ULLONG_MAX (ULONGLONG_MAX). If the value of base is not supported, strtoull() returns
0.

Related Information
v “stdlib.h” on page 62
v “atoi() — Convert character string to integer” on page 70
v “atol() — Convert character string to long” on page 70
v “atoll() — Convert character string to signed long long” on page 71
v “sscanf() — Read and Format Data” on page 94
v “strtoul() — Convert String to Unsigned Integer” on page 115

tolower(), toupper() — Convert Character Case
Format
#include <ctype.h>

int tolower(int c); /* Convert c to lowercase if appropriate */
int toupper(int c); /* Convert c to uppercase if appropriate */

General Description

The tolower() function converts c to a lowercase letter, if possible. Conversely, the
toupper() function converts c to an uppercase letter, if possible.

Returned Value

If successful, tolower() and toupper() return the corresponding character, as
defined in the IBM-1047 code page, if such a character exists.

If unsuccessful, tolower() and toupper() return the unchanged value c.

Related Information
v “ctype.h” on page 55
v “isalnum() to isxdigit() — Test integer value” on page 76

va_arg(), va_copy(), va_end(), va_start() — Access Function Arguments
Format
#include <stdarg.h>

var_type va_arg(va_list arg_ptr, var_type);
void va_end(va_list arg_ptr);
void va_start(va_list arg_ptr, variable_name);

C99: See the sample code below.
#define _ISOC99_SOURCE
#include <stdarg.h>

strtoull

118 z/OS V2R1.0 Metal C Programming Guide and Reference

var_type va_arg(va_list arg_ptr, var_type);
void va_end(va_list arg_ptr);
void va_start(va_list arg_ptr, variable_name);
void va_copy(va_list dest, va_list src);

General Description

The va_arg(), va_end(), and va_start() macros access the arguments to a function
when it takes a fixed number of required arguments and a variable number of
optional arguments. You declare required arguments as ordinary parameters to the
function and access the arguments through the parameter names.

The va_start() macro initializes the arg_ptr pointer for subsequent calls to va_arg()
and va_end().

The argument variable_name is the identifier of the rightmost named parameter in
the parameter list (preceding , ...). Use the va_start() macro before the va_arg()
macro. Corresponding va_start() and va_end() macro calls must be in the same
function. If variable_name is declared as a register, with a function or an array type,
or with a type that is not compatible with the type that results after application of
the default argument promotions, then the behavior is undefined.

The va_arg() macro retrieves a value of the given var_type from the location given
by arg_ptr and increases arg_ptr to point to the next argument in the list. The
va_arg() macro can retrieve arguments from the list any number of times within
the function.

The macros also provide fixed-point decimal support under z/OS XL C. The
sizeof(xx) operator is used to determine the size and type casting that is used to
generate the values. Therefore, a call, such as, x = va_arg(ap, _Decimal(5,2)); is
valid. The size of a fixed-point decimal number, however, cannot be made a
variable. Therefore, a call, such as, z = va_arg(ap, _Decimal(x,y)) where x = 5
and y = 2 is not valid.

The va_end() macro is needed by some systems to indicate the end of parameter
scanning.

va_start() and va_arg() do not work with parameter lists of functions whose
linkages were changed with the #pragma linkage directive.

stdarg.h and varargs.h are mutually exclusive. Whichever #include comes first,
determines the form of macro that is visible.

The type definition for the va_list type in this implementation is "char *va_list".

The va_copy() function creates a copy (dest) of a variable of type va_list (src). The
copy appear as if it has gone through a va_start() and the exact set of sequences of
va_arg() as that of src.

After va_copy() initializes dest, the va_copy() macro shall not be invoked to
reinitialize dest without an intervening invocation of the va_end() macro for the
same dest.

va_arg, va_copy, va_end, va_start

Chapter 3. C functions available to Metal C programs 119

Returned Value

The va_arg() macro returns the current argument.

The va_end(), va_copy(), and va_start() macros return no values.

Related Information
v “stdarg.h” on page 60
v “vsnprintf() — Format and print data to fixed length buffer”
v “vsprintf() — Format and Print Data to Buffer” on page 121

vsnprintf() — Format and print data to fixed length buffer
Format
#include <stdarg.h>
#include <stdio.h>

int vsnprintf(char *__restrict__ s, size_t n,
const char *__restrict__ format, va_list arg);

General Description

The vsnprintf() function is equivalent to snprintf(), except that instead of being
called with a variable number of arguments, it is called with an argument list as
defined by stdarg.h. For a specification of the format string, see “sprintf() — Format
and Write Data” on page 88.

Initialize the argument list by using the va_start macro before each call. These
functions do not invoke the va_end macro, but instead invoke the va_arg macro
causing the value of arg after the return to be unspecified.

Notes:

1. Use of vsnprintf() requires that an environment has been set up by using the
__cinit() function. When the function is called, GPR 12 must contain the
environment token created by the __cinit() call.

2. In contrast to some UNIX-based implementations of the C language, the z/OS
XL C/C++ implementation of the vprintf() family increments the pointer to the
variable arguments list. To control whether the pointer is incremented, call the
va_end macro after each function call.

Returned Value

The vsnprintf() function returns the number of characters that would have been
written had n been sufficiently large, not counting the terminating null character,
or a negative value if an encoding error occurred. Thus, the null-terminated output
has been completely written if and only if the returned value is nonnegative and
less than n.

Related Information
v “stdarg.h” on page 60
v “stdio.h” on page 60
v “va_arg(), va_copy(), va_end(), va_start() — Access Function Arguments” on

page 118

va_arg, va_copy, va_end, va_start

120 z/OS V2R1.0 Metal C Programming Guide and Reference

vsprintf() — Format and Print Data to Buffer
Format
#include <stdarg.h>
#include <stdio.h>

int vsprintf(char * __restrict__target-string,
const char * __restrict__format, va_list arg_ptr);

General Description

The vsprintf() function is equivalent to the sprintf() function, except that instead of
being called with a variable number of arguments, it is called with an argument
list as defined in stdarg.h. For a specification of the format string, see “sprintf() —
Format and Write Data” on page 88.

Initialize the argument list by using the va_start macro before each call. These
functions do not invoke the va_end macro, but instead invoke the va_arg macro
causing the value of arg after the return to be unspecified.

Notes:

1. Use of vsprintf() requires that an environment has been set up by using the
__cinit() function. When the function is called, GPR 12 must contain the
environment token created by the __cinit() call.

2. In contrast to some UNIX-based implementations of the C language, the z/OS
XL C/C++ implementation of the vprintf() family increments the pointer to the
variable arguments list. To control whether the pointer to the argument is
incremented, call the va_end macro after each call to vsprintf().

Returned Value

If successful, vsprintf() returns the number of characters written target-string.

If unsuccessful, vsprintf() returns a negative value.

Related Information
v “stdarg.h” on page 60
v “stdio.h” on page 60
v “va_arg(), va_copy(), va_end(), va_start() — Access Function Arguments” on

page 118

vsscanf() — Format Input of a STDARG Argument List
Format
#define _ISOC99_SOURCE
#include <stdarg.h>
#include <stdio.h>

int vsscanf(const char *__restrict__ s,
const char *__restrict__ format, va_list arg);

General Description

The vsscanf() function is equivalent to the sscanf() function, except that instead of
being called with a variable number of arguments, it is called with an argument
list as defined in stdarg.h.

vsprintf

Chapter 3. C functions available to Metal C programs 121

Initialize the argument list by using the va_start macro before each call. These
functions do not invoke the va_end macro, but instead invoke the va_arg macro
causing the value of arg after the return to be unspecified.

Notes:

1. Use of vsscanf() requires that an environment has been set up by using the
__cinit() function. When the function is called, GPR 12 must contain the
environment token created by the __cinit() call.

2. In contrast to some UNIX-based implementations of the C language, the z/OS
XL C/C++ implementation of the vscanf() family increments the pointer to the
variable arguments list. To control whether the pointer is incremented, call the
va_end macro after each function call.

Returned Value

See “sscanf() — Read and Format Data” on page 94.

Related Information
v “stdarg.h” on page 60
v “stdio.h” on page 60
v “sscanf() — Read and Format Data” on page 94

vsscanf

122 z/OS V2R1.0 Metal C Programming Guide and Reference

Appendix A. Function stack requirements

Table 14 lists the stack frame requirements for each Metal C runtime function. All
sizes are in bytes.

Table 14. Stack frame requirements for Metal C runtime functions

Function AMODE 31 stack size AMODE 64 stack size

abs 256 512

atoi 256 512

atol 256 512

atoll 1280 1536

calloc 1024 1536

__cinit 512 512

__cterm 1024 1024

div 256 512

free 512 1536

isalnum 256 512

isalpha 256 512

isblank 256 512

iscntrl 256 512

isdigit 256 512

isgraph 256 512

islower 256 512

isprint 256 512

ispunct 256 512

isspace 256 512

isupper 256 512

isxdigit 256 512

labs 256 512

ldiv 256 512

llabs 512 512

lldiv 512 512

malloc 768 1024

__malloc31 768 1024

memccpy 512 512

memchr 512 512

memcmp 512 512

memcpy 512 512

memmove 512 512

memset 256 512

qsort 12801 17921

© Copyright IBM Corp. 2013 123

Table 14. Stack frame requirements for Metal C runtime functions (continued)

Function AMODE 31 stack size AMODE 64 stack size

rand 256 512

rand_r 256 512

realloc 1024 2048

snprintf 3072 3584

snprintf when using e, E, f, F,
g, G conversion specifiers

32000 32768

snprintf when using e, E, f, F,
g, G conversion specifiers
with the L conversion prefix

48896 49920

sprintf 3072 3584

sprintf when using e, E, f, F,
g, G conversion specifiers

32000 32768

sprintf when using e, E, f, F,
g, G conversion specifiers
with the L conversion prefix

48896 49920

srand 256 512

sscanf 2304 2560

sscanf when using e, E, f, F,
g, G conversion specifiers

4864 5632

sscanf when using e, E, f, F,
g, G conversion specifiers

5888 6656

sscanf when using e, E, f, F,
g, G conversion specifiers
with the L conversion prefix

23040 23552

strcat 512 512

strchr 512 512

strcmp 512 512

strcpy 512 512

strcspn 768 768

strdup 1024 1536

strlen 512 512

strncat 512 512

strncmp 512 512

strncpy 512 512

strpbrk 768 768

strrchr 512 512

strspn 768 768

strstr 512 512

strtod 4096 4352

strtof 3072 3328

strtok 768 1024

strtok_r 1024 1536

strtol 1024 1024

124 z/OS V2R1.0 Metal C Programming Guide and Reference

Table 14. Stack frame requirements for Metal C runtime functions (continued)

Function AMODE 31 stack size AMODE 64 stack size

strtold 21248 21248

strtoll 1024 1024

strtoul 1024 1024

strtoull 768 1024

tolower 256 512

toupper 256 512

vsnprintf 3072 3584

vsnprintf when using e, E, f,
F, g, G conversion specifiers

32000 32768

vsnprintf when using e, E, f,
F, g, G conversion specifiers
with the L conversion prefix

48896 49920

vsprintf 3072 3584

vsprintf when using e, E, f, F,
g, G conversion specifiers

32000 32768

vsprintf when using e, E, f, F,
g, G conversion specifiers
with the L conversion prefix

48896 49920

vsscanf 2304 2560

vsscanf when using e, E, f, F,
g, G conversion specifiers

4864 5632

vsscanf when using e, E, f, F,
g, G conversion specifiers
with the l conversion prefix

5888 6656

vsscanf when using e, E, f, F,
g, G conversion specifiers
with the L conversion prefix

23040 23552

Note: You must add the stack size of the comparison function you supply to the base
value.

Appendix A. Function stack requirements 125

126 z/OS V2R1.0 Metal C Programming Guide and Reference

Appendix B. CICS programming interface examples

CICS Transaction Server for z/OS offers a number of programming interfaces. The
application programming interfsace is widely used by CICS transactions running in
a CICS environment. The exit programming interface can be used in a restricted
environment that enables the customization of CICS to specific requirements, such
as in global user exit programs.

The CICS application programming interface (CICS API) can be used from
programs written in any of the high level programming languages supported by
CICS, as well as in assembler programs. However, the exit programming interface
(XPI) is provided to allow access to some of the CICS services from user exit
programs, and these programs must be written in assembler. With the new support
in this release, it is now possible for a C language program using the Metal C
option to also use the CICS exit programming interface. This opens up the
possibility of writing global user exit code using Metal C as a high level language
alternative to assembler.

This topic contains some programming examples that demonstrate how the CICS
XPI and the CICS API can be used in Metal C.

Runtime environment adapter
A Metal C “main” code in CICS requires the following capabilities.
v prolog code for environment initialization
v epilog code for environment termination
v writable static area (WSA) initialization plug-in
v writable static area (WSA) termination plug-in

In CICS, the prolog and epilog code are mandatory because the Metal C default
prolog and epilog obtain storage using the MVS STORAGE macro. In CICS,
storage should be obtained using CICS storage management API commands, and
the execution environment should be set up by the DFHEIENT macro. The prolog
code is mandatory, and the corresponding epilog code should also be provided.

WSA initialization and termination plug-in code should be provided. A C “main”
program can be coded which does not use static data, but the CICS API injects
static data into the code.

CICS programs should be reentrant, so a CICS “main” program must be compiled
with the Metal C RENT option specified to meet this CICS requirement.

A Metal C subroutine requires the following capabilities.
v Optional prolog code for environment initialization
v Optional epilog code for environment termination

Subroutines do not cause writable static areas to be generated. When you write
subroutines, natural reentrancy must be maintained. The CICS exit programming
example provides an illustration of on how this is done.

© Copyright IBM Corp. 2013 127

Under CICS, the default Metal subroutine prolog and epilog code can be used if
the space allocated for the execution stack does not run out.

CICS application programming interface example
The CICS application programming interface example consists of the following
components.

MTLBOOT Assembler bootstrap program

MTLHALO Metal C “Hello World” using the CICS API

MTLENT “main” prolog macro

MTLXIT “main” epilog macro

MTLSENT Subroutine prolog macro

MTLSXIT Subroutine epilog macro

Data structures
The MTLBOOT assembler program defines the following data structures.
v PLISTINIT, which defines the WSA initialization parameters
v PLISTTRM, which defines the WSA termination parameters
v main_plist, which defines the “main” program entry parameters
v the application execution stack with the stack header defined by stack_hdr

Figure 51 illustrates how the API components and entry points used in the
examples are related.

Example description
MTLBOOT

The MTLBOOT serves as the adapter program that sets up the proper
CICS execution environment for assembler code. It provides the following
services.
v sets up the CICS execution environment for assembler
v obtains the program stack storage for the Metal C program execution
v a callback service to obtain additional stack storage
v a callback service to free additional stack storage

MTLZWSAT

MTLROCK

MTLZSWAI

WSA_INIT

PROLOG/EPILOG

WSA_TERM

MTLBOOT

MTLBOOT.ASM

"main"

MTLHALO.C

CICS API

Figure 51. CICS API example flow

128 z/OS V2R1.0 Metal C Programming Guide and Reference

v return to CICS after program execution
v the WSA initialization plug-in
v the WSA termination plug-in

The stack storage provided to the Metal C code has a header described by
the stack_hdr dsect. The fields that are not standard are bootstg and
mtlrock_ep. The bootstg field is a fullword containing a pointer to the
CICS allocated dynamic save area associated with the bootstrap program.
This is analogous to the “this” pointer in C++. The mtlrock_ep field is the
entry point to the callback routine. An input parameter provided to the
callback routine determines whether getmain or freemain is used to
allocate storage.

MTLHALO
MTLHALO represents the application code. This is a simple example
which demonstrates how the CICS API is used under Metal C. It also
demonstrates the use of the prolog and epilog examples. This is the code
that you would replace with your own application requirements.

MTLENT
MTLENT is mandatory for the “main” program. In this example set, the
complexity is encapsulated within the bootstrap program so that the main
prolog macro can be simple and reusable. This macro assumes that it is
invoked with an entry environment described by the “main_plist”.

MTLXIT
MTLXIT is the “main” program exit macro.

MTLSENT
MTLSENT is an optional macro for subroutine entry. It provides an
example of what can be done if additional stack storage needs to be
obtained. This macro provides an example of how to invoke the callback
routines in the bootstrap program.

MTLSXIT
MTLSXIT is an optional subroutine exit macro. If MTLSENT is used for
entry, MTLSXIT should be used for exit.

Example code
Figure 52 on page 130 contains the bootstrap for using Metal C with CICS API
programs.

Appendix B. CICS programming interface examples 129

*ASM XOPTS(NOPROLOG NOEPILOG SP)

* *
* Module Name = MTLBOOT *
* *
* Descriptive Name = CICS Bootstrap for metal C code example *
* *
* @BANNER_START 02 *
* MTLBOOT *
* Licensed Materials - Property of IBM *
* *
* "Restricted Materials of IBM" *
* *
* 5655-S97 *
* *
* (C) Copyright IBM Corp. 1989, 2009 *
* *
* Description *
* The bootstrap routine sets up stack storage and flows *
* control to the metal c program. It provides callbacks for *
* the WSA init/term plugin functionality. It also provides *
* the getmain/freemain entry points which are invoked by the *
* subroutine prolog/epilog routines. *
* *
* This code also provides an implementation proof-of-concept *
* if the user wants to create a CICS API layer in assembler *
* and the business layer in metal c. This code can be extended*
* with the code to implement the CICS API. *
* *

* The Metal C Bootstrap program. *

*

* Input parm list *

PLISTTRM DSECT WSA termination plugin parameters
trm_addr DS F
trm_size DS F
trm_user_ptr DS F
*
PLISTINIT DSECT WSA initialization plugin parameters
init_addr DS F
init_size DS F
init_user_ptr DS F
init_align DS F

* define the stack block control area *

stack_hdr dsect
bootstg ds f metal boot reg 12 contents
mtlrock_ep ds a callback for getmain/freemain
blk_beg_addr ds a begin address of block
blk_end_addr ds a end address of block
lstack_hdr equ *-stack_hdr
*
metlget equ x’0001’
metlfre equ x’0002’
*

copy dfhkebrc

CICS Bootstrap for metal C code example: MTLBOOT (Part 1 of 7)

Figure 52. CICS Bootstrap for metal C code example: MTLBOOT

130 z/OS V2R1.0 Metal C Programming Guide and Reference

* Program state *

DFHEISTG
*
* local working storage
*
booteye ds cl8
bootrsa DS 18F
mtlrsa ds 7F
*
AREA DS A
NAB DS A
RETCD DS F
*
main_plist ds 0a
hdr_ptr ds a
stack_ptr ds a
org_r1 ds a
*
dsapool ds 10f array of pointers to dsablocks
next_free ds H array index
*

DFHEIEND
DFHREGS ,

*
MTLBOOT CSECT
MTLBOOT DFHEIENT CODEREG=(R3),DATAREG=(R12),EIBREG=(R11)
MTLBOOT AMODE 31
MTLBOOT RMODE 31
*
* logic
* getmain ’main’ working storage
* format R1 content
* dispatch
*

LARL R10,CONSTANTS
USING CONSTANTS,R10

*
mvc booteye,=cl8’>MTLROCK’ set eyecatcher in anchor
LA R13,bootrsa point R13 to local save
st r1,org_r1 save user plist register
EXEC CICS ADDRESS EIB(DFHEIBR)
EXEC CICS GETMAIN SET(R4) FLENGTH(DSA_SIZE) RESP(RETCD)
clc retcd,dfhresp(normal) check getmain error
jne main_abend
using stack_hdr,r4
st r12,bootstg work area for metal rock callback
mvc mtlrock_ep,callback_ep
st r4,blk_beg_addr
lr r5,r4 compute end address
a r5,dsa_size *
st r5,blk_end_addr

*

CICS Bootstrap for metal C code example: MTLBOOT (Part 2 of 7)

Appendix B. CICS programming interface examples 131

xr r5,r5 store block address in pool ctrl
la r6,dsapool
st r4,0(r5,r6) *
la r5,1(,r5) increment index
sth r5,next_free *
drop r4

*
la r5,lstack_hdr(,r4) point to user area
st r4,hdr_ptr
st r5,stack_ptr
la r1,main_plist set plist register

*
* flow control to the metal c program
*

L R15,VMAIN
BASR R14,R15

* freemain whatever we’ve getmained
j main_return

*
main_abend ds 0h

EXEC CICS ABEND ABCODE(’CMTL’)
main_return ds 0h

DFHEIRET
drop r3

*

* The MTLROCK callback service *
* The input environment is as follows; *
* R2 - the function code *
* R1 - the boot token, the mtlboot eistg pointer. This is *
* important for getmain especially, because at the time *
* getmain for stack storage is invoked, there’s no more *
* storage space to use. *
* C++ developers can think of this as the ’this’ pointer *
* On return from a getmain *
* R2 - block pointer *
* R1 - the user section *
* *
* The getmained block pointer is stored in an array of 10 *
* elements. No check is make for overflow. *

ENTRY MTLROCK
MTLROCK DS 0H

stm r10,r0,mtlrsa-DFHEISTG(r1) save used regs
lr r12,r1 set token in r12

*
LETSROCK DS 0H

larl r10,constants
EXEC CICS ADDRESS EIB(DFHEIBR)

*
chi r2,metlget do we getmain
je getmain

CICS Bootstrap for metal C code example: MTLBOOT (Part 3 of 7)

132 z/OS V2R1.0 Metal C Programming Guide and Reference

**
* else it’s a freemain. Since we are maintaining a stack, *
* the last getmained block is the first to be freed *
**
*
* freemain logic

lh r5,next_free obtain block address to free
bctr r5,0 some validation needed here
sll r5,2 *
la r6,dsapool *
l r4,0(r5,r6) *
EXEC CICS FREEMAIN DATAPOINTER(R4) RESP(RETCD)
clc retcd,dfhresp(normal)
jne freemain_abend *
xr r4,r4 clear the array location
st r4,0(r5,r6) *
srl r5,2 decrement the array index
sth r5,next_free *
j retrock

freemain_abend ds 0h
EXEC CICS ABEND ABCODE(’FMTL’)
j retrock

*
**
* getmain goes in here *
**
getmain ds 0h

EXEC CICS GETMAIN SET(R4) FLENGTH(DSA_SIZE) RESP(RETCD)
clc retcd,dfhresp(normal) check getmain error
jne getmain_abend
using stack_hdr,r4
st r12,bootstg work area for metal rock callback
mvc mtlrock_ep,callback_ep
st r4,blk_beg_addr
lr r5,r4 compute end address
a r5,dsa_size *
st r5,blk_end_addr

*
lh r5,next_free store block address in pool ctrl
sll r5,2 *
la r6,dsapool
st r4,0(r5,r6) *
srl r5,2 increment array index
la r5,1(,r5) *
sth r5,next_free *
drop r4

*
lr r2,r4 r2 has blk hdr ptr
lr r1,r4 r1 contains the user section
la r1,lstack_hdr(,r1)
j retrock

*

CICS Bootstrap for metal C code example: MTLBOOT (Part 4 of 7)

Appendix B. CICS programming interface examples 133

getmain_abend ds 0h
EXEC CICS ABEND ABCODE(’EMTL’)

*
retrock ds 0h

LM r10,r0,mtlrsa
BR r14

*

* METALC WSA Initialization plugin *
* The R13, dfheistg being used here is not the same as that *
* being used in the main entry and in mtlrock. This EISTG is *
* taken out of the initial DSA allocated for the metal c main *
* entry point *

ENTRY MTLZWSAT
MTLZWSAT DS 0F

STM 14,11,12(13)
LR 15,13
L 13,8(,13)
ST 15,4(,13)

* init common registers
lr 12,13 eistg for this callback
LR R9,R1 set plist register
LARL R10,CONSTANTS
USING PLISTTRM,R9

*
* logic
*

EXEC CICS ADDRESS EIB(DFHEIBR)
ICM R4,B’1111’,trm_addr
jz trm_retn
EXEC CICS FREEMAIN DATAPOINTER(R4)

*
trm_retn ds 0h

L 13,4(,13)
L 14,12(,13)
LM 1,11,24(13)
BR 14
DS 0F
DROP R9

*

* METALC WSA Initialization plugin *
* The R13, dfheistg being used here is not the same as that *
* being used in the main entry and in mtlrock. This EISTG is *
* taken out of the initial DSA allocated for the metal c main *
* entry point *

CICS Bootstrap for metal C code example: MTLBOOT (Part 5 of 7)

134 z/OS V2R1.0 Metal C Programming Guide and Reference

ENTRY MTLZWSAI
MTLZWSAI DS 0F

STM 14,11,12(13)
LR 15,13
L 13,8(,13)
ST 15,4(,13)

*
* init common registers
*

lr 12,13 eistg for this callback
LARL R10,CONSTANTS
LR R9,R1 set plist register
USING PLISTINIT,R9
XC AREA,AREA init output data

*
* logic
*

EXEC CICS ADDRESS EIB(DFHEIBR)
ICM R5,B’1111’,INIT_SIZE
JZ RETURN nothing to do
icm r6,b’1111’,init_addr is there something to copy
jz return nothing to copy

*
EXEC CICS GETMAIN SET(R4) FLENGTH(INIT_SIZE) RESP(RETCD)
clc retcd,dfhresp(normal) check getmain error
je wsacopy proceed to copy

* controlled abend the transaction if getmain fails to allow*
* IPCS analysis *

* DC H’0’

EXEC CICS ABEND ABCODE(’DMTL’)
j return

*
wsacopy ds 0h

ST R4,AREA
lr r7,r5 propagate length
mvcl r4,r6 and copy the WSA area

*
RETURN DS 0H

L 15,AREA
L 13,4(,13)
L 14,12(,13)
LM 1,11,24(13)
BR 14
DS 0F

*
CONSTANTS DS 0D
VMAIN DC V(MAIN)
callback_ep dc a(mtlrock)

CICS Bootstrap for metal C code example: MTLBOOT (Part 6 of 7)

Appendix B. CICS programming interface examples 135

* define the allocation size of a stack block here *

dsa_size dc a(32000)
*dsa_size dc a(4096)

LTORG

* prolog/epilog for a CICS API layer (proposed) *

ENTRY MTL2CICS
MTL2CICS DS 0F

STM RE,RC,12(RD) save registers
lr rc,rd pick up the ’this’ pointer
ahi rc,-4 *
l rc,0(,rc) point to stack block header
l rc,0(,rc) and pick up bootstg ptr
st rd,bootrsa+4 store prev save pointer
la rd,bootrsa point to routine RSA

*
* mtl2cics logic
*
mtl2cics_rtn ds 0h

l rd,4(,rd) recover previous save pointer
lm re,rc,12(rd) restore regs
br re and return to caller

*
ltorg contants/literal pool
END MTLBOOT

CICS Bootstrap for metal C code example: MTLBOOT (Part 7 of 7)

Figure 53 on page 137 contains example code that demonstrates the use of the
prolog and epilog examples.

136 z/OS V2R1.0 Metal C Programming Guide and Reference

Figure 54 on page 138 contains the main prolog for using Metal C with CICS API
programs.

#include <stodio>
#include <string.h>
#include <stdlib.h>

/* char w_text[81]; */
/* the generated code seems to locate globals in the */
/* code section. Global variables make the program non-reentrant */
DFHEIBLK *eiptr;
/* The prolog and epilog will cause a getmain and freemain for */
/* additional stack space to be driven if the stack block size */
/* setting in MTLBOOT is 4096 bytes. */
#pragma prolog(bigrtn,"MTLSENT")
#pragma epilog(bigrtn,"MTLSXIT")
void bigrtn()
{

char bigbuff[3800];
/*char bigbuff[16]; */
bigbuff[0] = ’1’;

}

#pragma prolog(sendmsg,"MTLSENT")
/* #pragma epilog(sendmsg,"MTLSXIT") */
void sendmsg(char *s)
{

int out_len = 81;
char w_text[81];

bigrtn();
memset(w_text,’ ’,out_len);
strncpy(w_text,s,out_len);
EXEC CICS SEND FROM(w_text) LENGTH(out_len) WAIT;

}

#pragma prolog(main,"MTLENT")
#pragma epilog(main,"MTLXIT")
main()
{

char msg[]= "METALC Hello";
int msg_len = 12;

/*int out_len = 81; */
/*char w_text[81]; */
/*char s[23] = "Hello CICS from METAL!\n";*/

EXEC CICS ADDRESS EIB(dfheiptr);
EXEC CICS WRITEQ TS QUEUE("NOEL0000") FROM(msg) LENGTH(msg_len);
sendmsg("Hello CICS from METAL!\n");

}

Figure 53. CICS API used under Metal C example code: MTLHALO

Appendix B. CICS programming interface examples 137

Figure 55 on page 139 contains the main epilog for using Metal C with CICS API
programs.

* *
* MODULE NAME = MTLENT *
* *
* DESCRIPTIVE NAME = METAL C FOR CICS MAIN PROLOG *
* *
* @BANNER_START 02 *
* MTLENT *
* LICENSED MATERIALS - PROPERTY OF IBM *
* *
* "RESTRICTED MATERIALS OF IBM" *
* *
* 5655-S97 *
* *
* (C) COPYRIGHT IBM CORP. 1989, 2009 *
* *

MACRO
&NAME MTLENT

GBLC &CCN_PRCN
GBLC &CCN_LITN
GBLC &CCN_BEGIN
GBLC &CCN_ARCHLVL
GBLA &CCN_DSASZ
GBLA &CCN_RLOW
GBLA &CCN_RHIGH
GBLB &CCN_NAM
GBLB &CCN_LP64
GBLC &CCN_WSA_INIT
GBLC &CCN_WSA_TERM

&CCN_WSA_INIT SETC ’MTLZWSAI’
&CCN_WSA_TERM SETC ’MTLZWSAT’

* THE BOOTSTRAP ROUTINE WILL PROVIDE US WITH THE INITIAL EXECUTION *
* ENVIROMENT. THE INPUT DATA, POINTED BY R1 IS DEFINED IN MTLBOOT. *
* *
* PREPARE THE EXECUTION ENVIRONMENT. *

STM 14,12,12(13)
*

* CHAIN THE CURRENT STACK TO THE PREVIOUS *

LR 14,13 SAVE PREVIOUS SAVEAREA PTR
L 13,0(,1) PICK UP THE BLOCK HEADER POINTER
L 12,4(,1) PICK UP THE USER AREA POINTER
ST 13,0(,12) SAVE AS CURRENT STACK PREFIX
LA 13,4(,12) POINT R13 TO METALC USER STACK AREA

*
ST 13,8(,14) CHAIN DSA TO CALLER’S DSA
ST 14,4(,13) POINT TO PREVIOUS STACK AREA
L 1,8(,1) RESTORE PLIST POINTER

*
MEND

Figure 54. Metal C for CICS main prolog: MTLENT

138 z/OS V2R1.0 Metal C Programming Guide and Reference

Figure 56 on page 140 contains the subroutine prolog for using Metal C with CICS
API programs.

* *
* MODULE NAME = MTLXIT *
* *
* DESCRIPTIVE NAME = METAL C FOR CICS MAIN EPILOG *
* *
* @BANNER_START 02 *
* MTLXIT *
* LICENSED MATERIALS - PROPERTY OF IBM *
* *
* "RESTRICTED MATERIALS OF IBM" *
* *
* 5655-S97 *
* *
* (C) COPYRIGHT IBM CORP. 1989, 2009 *
* *

MACRO
&NAME MTLXIT

GBLC &CCN_PRCN
GBLC &CCN_LITN
GBLC &CCN_BEGIN
GBLC &CCN_ARCHLVL
GBLA &CCN_DSASZ
GBLA &CCN_RLOW
GBLA &CCN_RHIGH
GBLB &CCN_NAM
GBLB &CCN_LP64

* RETURN TO THE BOOTSTRAP PROGRAM, MTLBOOT, WHICH WILL CLEAN UP THE *
* EXECUTION ENVIRONMENT. *

L 13,4(,13) POINT TO CALLER’S SAVE
LM 14,12,12(13) RESTORE CALLER’S REGS
BR 14 AND RETURN
MEND

Figure 55. Metal C for CICS main epilog: MTLXIT

Appendix B. CICS programming interface examples 139

* *
* MODULE NAME = MTLSENT *
* *
* DESCRIPTIVE NAME = METAL C FOR CICS SUBROUTINE PROLOG *
* *
* @BANNER_START 02 *
* MTLSENT *
* LICENSED MATERIALS - PROPERTY OF IBM *
* *
* "RESTRICTED MATERIALS OF IBM" *
* *
* 5655-S97 *
* *
* (C) COPYRIGHT IBM CORP. 1989, 2009 *
* *

MACRO
&NAME MTLSENT

GBLC &CCN_PRCN
GBLC &CCN_LITN
GBLC &CCN_BEGIN
GBLC &CCN_ARCHLVL
GBLA &CCN_DSASZ
GBLA &CCN_RLOW
GBLA &CCN_RHIGH
GBLB &CCN_NAM
GBLB &CCN_LP64

* WARNING R0 HOLDS THE WSA TOKEN. DO NOT USE IT *

STM 14,12,12(13)
LR 15,13
AHI 15,-4 POINT TO STACK PREFIX
L 14,0(,15) PICK UP BLOCK HDR PTR

* CHECK IF CURRENT BLOCK STILL HAS SPACE *
* THE MAXIMUM STACK ANY ROUTINE CAN HAVE SHOULD BE DSA_SIZE *
* MINUS 20, THE SYSTEM USAGE *

L 2,8(,13) PICK UP THE NAB
AHI 2,4 COUNT THE PREFIX SIZE
AHI 2,&CCN_DSASZ CCN_DSASZ SHOULD FIT IN A

* HALFWORD
*

C 2,12(,14) WILL IT FIT IN CURRNT BLK?
JH GET_SPACE_&SYSNDX SORRY, NO.
L 2,8(,13) PICK UP NAB AGAIN
ST 14,0(,2) SET HEADER POINTER AS NEW

* STACK PREFIX
LA 2,4(,2) POINT TO USER STACK AREA
ST 13,4(,2) CHAIN TO PREVIOUS STACK
LR 13,2 SET R13 TO CURRENT
J DONE_&SYSNDX

*
GET_SPACE_&SYSNDX DS 0H

Metal C for CICS subroutine prolog: MTLSENT (Part 1 of 2)

Figure 56. Metal C for CICS subroutine prolog: MTLSENT

140 z/OS V2R1.0 Metal C Programming Guide and Reference

* OBTAIN ADDITIONAL STACK STORAGE *

LHI 2,1 SET GETMAIN FUNCTION
L 1,0(,14) SET THE BOOT TOKEN
L 15,4(,14) SET THE MTLROCK SERVICE ADDRS
BASR 14,15 AND CALL IT

*
* DC H’0’

ST 2,0(,1) SET STACK PREFIX WORD
L 2,24(,13) RECOVER PLIST REGISTER
ST 1,8(,13) UPDATE PREVIOUS NAB WHICH

* POINTS TO THE STACK PREFIX
LA 1,4(,1) POINT TO USER STACK AREA
ST 13,4(,1) CHAIN IT TO PREVIOUS
LR 13,1 SET R13 TO CURRENT
LR 1,2 SET PLIST POINTER

*
DONE_&SYSNDX DS 0H

MEND

Metal C for CICS subroutine prolog: MTLSENT (Part 2 of 2)

Figure 57 on page 142 contains the subroutine epilog for using Metal C with CICS
API programs.

Appendix B. CICS programming interface examples 141

CICS exit programming interface example
The CICS exit programming interface is described in the CICS Customization
Guide. It is used for programs which run at global user exit points. The example in
this section is for the XTSEREQ exit point. The example exit is driven when a
temporary storage queue request is to be serviced by CICS. The example exit code
however does not perform any business logic. All that is shown is a storage
management getmain and freemain request using the exit programming interface.

* *
* MODULE NAME = MTLSXIT *
* *
* DESCRIPTIVE NAME = METAL C FOR CICS SUBROUTINE EPILOG *
* *
* @BANNER_START 02 *
* MTLSXIT *
* LICENSED MATERIALS - PROPERTY OF IBM *
* *
* "RESTRICTED MATERIALS OF IBM" *
* *
* 5655-S97 *
* *
* (C) COPYRIGHT IBM CORP. 1989, 2009 *
* *

MACRO
&NAME MTLSXIT

GBLC &CCN_PRCN
GBLC &CCN_LITN
GBLC &CCN_BEGIN
GBLC &CCN_ARCHLVL
GBLA &CCN_DSASZ
GBLA &CCN_RLOW
GBLA &CCN_RHIGH
GBLB &CCN_NAM
GBLB &CCN_LP64

*
LR 15,13
AHI 15,-4 POINT TO PREFIX
LR 2,15 COMPUTE THEORETICAL BLOCK CTL
AHI 2,-16 AREA POINTER
C 2,0(,15) ARE WE AT THE TOP OF BLOCK ?
JNE NOFREE_&SYSNDX

* WE HAVE REACHED THE TOP OF THE BLOCK WHICH WE ARE GOING TO *
* HAND BACK AS WE ARE DONE WITH IT. *
* THE CONTENTS OF R12 WILL BE DESTROYED IN THE PROCESS *

LR 14,2 COPY BLOCK HDR POINTER
LHI 2,2 REQUEST FREEMAIN
L 1,0(,14) SET THE BOOT TOKEN
L 15,4(,14) SET EP ADDRESS
BASR 14,15 INVOKE SERVICE

*
NOFREE_&SYSNDX DS 0H

L 13,4(,13) POINT TO CALLER’S SAVE
LM 14,12,12(13)
BR 14
MEND

Figure 57. Metal C for CICS subroutine epilog: MTLSXIT

142 z/OS V2R1.0 Metal C Programming Guide and Reference

The CICS exit programming interface example consists of the following
components:

MTLBTXPI
Assembler Language bootstrap program.

MTL2XPI
Example using the CICS exit programming interface for Metal C.

Figure 58 illustrates how the XPI components and entry points used in the
examples are related.

The prolog and epilog macros provided for the CICS API examples are also being
used by MTL2XPI.

The MTLBTXPI program is similar to MTLBOOT. It performs the same function
and sets up a similar execution environment for MTL2XPI. MTLBTXPI, unlike
MTLBOOT, does not provide WSA initialization and termination. MTL2XPI is
coded as a C subroutine but not a main program. This avoids the need of setting
up a writable static area.

The CICS exit programming interface does not internally generate statically
writable variables because it is an assembler only interface.

The data passed from MTLBTXPI to MTL2XPI is described by “main_plist” and
the getmain allocated storage for use as the Metal C execution stack. In XPI
execution, R1 points to the user exit parameter area. Sample code on how to
properly pass this information for Metal C execution is shown. Like MTLBTXPI,
the main_plist fields, hdr_ptr, and stack_ptr all point to areas in the Metal C stack
storage.

MTL2XPI is the C code that shows an example of how to invoke a CICS XPI
service in C. The services invoked are getmain and freemain, but this provides a
demonstration that the CICS XPI which is assembler-only can be used by C code.

It should be pointed out that register 13 needs to be set to the contents of
“uepstack” upon entry into the XPI. The contents must be copied into another
register and not in the C execution stack storage, because register 13 is also used
by Metal C as the execution stack pointer.

MTL2XPI uses MTLENT and MTLXIT as its prolog and epilog macros. This
demonstrates reuse of these macros because the bootstrap programs, while
different, provide the same interface data. MTLSENT and MTLSXIT can also be
used in XPI using Metal C code if stack expansion is required.

MTLROCK
Prolog
Epilog

MTLBTXPI

MTLBOOT.ASM

MTL2XPI

MTL2XPI.C

CICS XPI

Figure 58. CICS XPI example flow

Appendix B. CICS programming interface examples 143

Example code
Figure 59 contains example code for the Metal C CICS bootstrap.

*ASM XOPTS(NOPROLOG NOEPILOG SP)

* *
* Module Name = MTLBTXPI *
* *
* Descriptive Name = CICS Bootstrap for metal C code example *
* *
* @BANNER_START 02 *
* MTLBTXPI *
* Licensed Materials - Property of IBM *
* *
* "Restricted Materials of IBM" *
* *
* 5655-S97 *
* *
* (C) Copyright IBM Corp. 1989, 2009 *
* *
* Description *
* The bootstrap routine sets up stack storage and flows *
* control to the metal c program. The metalc program will *
* implement the business logic as a C subrooutine ie not *
* ’main’. This means a WSA Init/Term callbacks don’t need to *
* be provided. *
* *
* Like the metalc CICS application bootstrap, storage *
* management callbacks for the various subroutine *
* prolog/epilog code is still provided. *
* *
* This bootstrap code is used for coding CICS Exit Programming*
* Interface using programs. The XPI is used for assembler-only*
* user exit programs. *
* *
* The z/OS C/C++ metalc option allows C programmers to use *
* the C language to write CICS XPI code in user exit programs.*
* *

* The Metal C Bootstrap program for the CICS XPI *

*

* Define the stack block control area *

stack_hdr dsect
bootstg ds f bootstrap storage pointer
mtlrock_ep ds a callback for getmain/freemain
blk_beg_addr ds a begin address of block
blk_end_addr ds a end address of block
lstack_hdr equ *-stack_hdr
*
metlget equ x’0001’
metlfre equ x’0002’
*

copy dfhkebrc

CICS bootstrap for Metal C example program: MTLBTXPI (Part 1 of 7)

Figure 59. CICS bootstrap for Metal C example program: MTLBTXPI

144 z/OS V2R1.0 Metal C Programming Guide and Reference

* Program state *

*
* local working storage, pointed to by bootstg
*
workstg dsect
bootrsa DS 18F
booteye ds cl8
mtlrsa ds 7F
saverd DS F
*
main_plist ds 0a metalc main entry argument
hdr_ptr ds a ptr to dsa stack header
stack_ptr ds a ptr to dsa stack user area
org_r1_ptr ds a r1 contents on entry
*
org_r1 ds a r1 contents on entry
dsapool ds 10f array of pointers to dsablocks
next_free ds H array index
lworkstg equ *-workstg

* The XTSEREQ exit is driven before CICS processes a temporary *
* storage API request. To use this example for other global user*
* exit points, include the relevant definition of the user exit *
* parameter list. *

DFHUEXIT TYPE=EP,ID=XTSEREQ GLUE parameter list definition
DFHUEXIT TYPE=XPIENV Setup XPI environment
COPY DFHSMMCY Setup XPI plist for SM

*
MTLBTXPI CSECT
MTLBTXPI AMODE 31
MTLBTXPI RMODE 31
*
* logic
* getmain ’main’ working storage
* format R1 content
* dispatch
*

stm R14,R12,12(R13) Save caller’s registers
* Get access to GLUE parameter list

lr R9,R1 Save r1 contents
*

larl R10,CONSTANTS
using CONSTANTS,R10

*
* get bootstrap work area storage
*

l r2,work_size
lr r3,r1 set dfhuepar ptr register
brasl r11,getstor
lr r4,r1
using workstg,r4 set addr’ability
mvc booteye,=cl8’>MTLBXPI’ set eyecatcher in anchor
st r9,org_r1 save user plist register
la r9,org_r1 normalize to C parm convention
st r9,org_r1_ptr *

CICS bootstrap for Metal C example program: MTLBTXPI (Part 2 of 7)

Appendix B. CICS programming interface examples 145

*
* get initial dynamic storage area
*

l r2,dsa_size
l r3,org_r1 set dfhuepar ptr register
brasl r11,getstor
lr r5,r1
using stack_hdr,r5
st r4,bootstg work area for metal rock callback
mvc mtlrock_ep,callback_ep
st r5,blk_beg_addr
lr r6,r5 compute end address
a r6,dsa_size *
st r6,blk_end_addr

*
xr r6,r6 store block address in pool ctrl
la r7,dsapool
st r5,0(r6,r7) *
la r6,1(,r6) increment index
sth r6,next_free *
drop r5

*
la r6,lstack_hdr(,r5) point to user area
st r5,hdr_ptr
st r6,stack_ptr
la r1,main_plist set plist register

*
* flow control to the metal c program
*

la R13,bootrsa point R13 to bootstrap save
l R15,metal_ep
basr R14,R15

*
* free the allocated metalc stack storage
*

lh r6,next_free obtain block address to free
bctr r6,0 some validation needed here
sll r6,2 *
la r7,dsapool *
l r2,0(r6,r7) set free storage parameter
l r3,org_r1 pick up dfhuepar ptr
brasl r11,freestor

*
main_return ds 0h

l r3,org_r1 load dfhuepar ptr
lr r2,r4 address to free
brasl r11,freestor and free up our work area
l r13,UEPEPSA-DFHUEPAR(,r3) point to caller’s save
lm r14,r12,12(r13) restore caller’s register
br r14 return to caller

*

CICS bootstrap for Metal C example program: MTLBTXPI (Part 3 of 7)

146 z/OS V2R1.0 Metal C Programming Guide and Reference

* The MTLROCK callback service *
* The input environment is as follows; *
* R2 - the function code *
* R1 - the boot token, the mtlbtxpi workstorage ptr. This is *
* important for getmain especially, because at the time *
* getmain for stack storage is invoked, there’s no more *
* storage space to use. *
* C++ developers can think of this as the ’this’ pointer *
* On return from a getmain *
* R2 - block pointer *
* R1 - the user section *
* *
* The getmained block pointer is stored in an array of 10 *
* elements. No check is make for overflow. *

ENTRY MTLROCK
MTLROCK DS 0H

stm r10,r0,mtlrsa-workstg(r1) save used regs
lr r4,r1 set token in r4

*
LETSROCK DS 0H

larl r10,constants
*

chi r2,metlget do we getmain
je getmain

**
* else it’s a freemain. Since we are maintaining a stack, *
* the last getmained block is the first to be freed *
**
*
* freemain logic

lh r5,next_free obtain block address to free
bctr r5,0 some validation needed here
sll r5,2 *
la r6,dsapool *
l r2,0(r5,r6) set free storage parameter
l r3,org_r1 pick up dfhuepar ptr
brasl r11,freestor

*
xr r3,r3 clear the array location
st r3,0(r5,r6) *
srl r5,2 decrement the array index
sth r5,next_free *
j retrock

*

CICS bootstrap for Metal C example program: MTLBTXPI (Part 4 of 7)

Appendix B. CICS programming interface examples 147

**
* getmain goes in here *
**
getmain ds 0h

l r2,dsa_size set size to get
l r3,org_r1 set dfhuepar ptr register
brasl r11,getstor
lr r5,r1
using stack_hdr,r5
st r4,bootstg work area for metal rock callback
mvc mtlrock_ep,callback_ep
st r5,blk_beg_addr
lr r6,r5 compute end address
a r6,dsa_size *
st r6,blk_end_addr

*
lh r6,next_free store block address in pool ctrl
sll r6,2 *
la r7,dsapool
st r5,0(r6,r7) *
srl r6,2 increment array index
la r6,1(,r6) *
sth r6,next_free *
drop r5

*
lr r2,r5 r2 has blk hdr ptr
lr r1,r5 r1 contains the user section
la r1,lstack_hdr(,r1)
j retrock

*
retrock ds 0h

lm r10,r0,mtlrsa
br r14

*
*
CONSTANTS ds 0D
metal_ep dc V(mtl2xpi)
callback_ep dc a(mtlrock)

* define the allocation size of a stack block here. Change *
* these as needed. *

dsa_size dc a(32000)
work_size dc a(lworkstg)
*dsa_size dc a(4096)

LTORG

CICS bootstrap for Metal C example program: MTLBTXPI (Part 5 of 7)

148 z/OS V2R1.0 Metal C Programming Guide and Reference

* Get dynamic storage area. *
* The CICS storage management XPI function, DHFSMMCX, is used *
* to get the storage. *
* R2 contains the storage length *
* R1 contains the storage address on exit or zero if an error *
* occurred. *
* Work regs; *
* R3,R6,R7 *

getstor ds 0h

using dfhuepar,r3 set by caller
l R6,UEPXSTOR set base to XPI plist
using DFHSMMC_ARG,R6 .. tell ASM
st r13,saverd save R13
l R13,UEPSTACK Set R13 to the Kernel stack
DFHSMMCX CALL, @

CLEAR, @
IN, @
FUNCTION(GETMAIN), @
GET_LENGTH((R2)), @
SUSPEND(YES), @
STORAGE_CLASS(USER), @
OUT, @
ADDRESS((R7)), @
RESPONSE(*), @
REASON(*)

CLI SMMC_RESPONSE,SMMC_OK Response OK?
BE GETOK .. yes

*
xr r7,r7 clear output register
WTO ’MTLBTXPI - GETMAIN failure ’
LA R15,UERCBYP Get return code
L R1,UEPEPSA Get address of caller’s RSA
ST R15,16(R1) Store RC in caller’s R15

*
GETOK DS 0H R2 is base register for program data

L R13,saverd restore r13 contents
lr r1,r7 set output reg
br r11 and return to caller
drop r3,r6

CICS bootstrap for Metal C example program: MTLBTXPI (Part 6 of 7)

Appendix B. CICS programming interface examples 149

**
* Free allocated storage *
* R2 contains the address of the storage to be freed *
* Work Regs; *
* R3,R6 *
**
freestor DS 0H

using dfhuepar,r3 r3 set by caller
L R6,UEPXSTOR set base to XPI plist
USING DFHSMMC_ARG,R6 .. tell ASM
st r13,saverd
L R13,UEPSTACK Set R13 to the Kernel stack
DFHSMMCX CALL, @

CLEAR, @
IN, @
FUNCTION(FREEMAIN), @
ADDRESS((R2)), @
STORAGE_CLASS(USER), @
OUT, @
RESPONSE(*), @
REASON(*)

*
* return code checking is left as an exercise for the reader
*

l r13,saverd
br r11
drop r3,r6
LTORG
END MTLBTXPI

CICS bootstrap for Metal C example program: MTLBTXPI (Part 7 of 7)

Figure 60 on page 151 contains example code to use the CICS exit programming
API in C.

150 z/OS V2R1.0 Metal C Programming Guide and Reference

/**/
/* */
/* Program Name : MTL2XPI */
/* Description : Sample code to use the CICS Exit Programming API*/
/* in C */
/* Author : Noel C. Sales */
/* Date : 21 Jan 2010 */
/* */
/**/

/*--*/
/* a C mapping for the dfhuepar dsect */
/*--*/
typedef struct {

void *uepexn; /* Address of exit number */
void *uepgaa; /* Address of global work area */
void *uepgal; /* Address of work area length */
void *uepcrca; /* Address of current return code */
void *ueptca; /* reserved */
void *uepcsa; /* reserved */
void *uepepsa; /* Address of exit prog save area */
void *uephmsa; /* Address of host module"s RSA */
void *uepgind; /* Address of task data key and data */

/* location flags */
void *uepstack; /* Address of kernel stack entry */
void *uepxstor; /* Address of storage for XPI */

/* parameter list */
/* standard parameters above completed by User Exit Handler*/

void *ueptrace; /* Address of Trace flag */
void *uepparms; /* Start of variable parameters */
void *ueppcds; /* Address of program control exits */

/* DSECT */
void *ueptacb; /* Address of TACB */

} dfhuepar_t;

/*

Notes:

Metal C uses register 13 to point to the DSA by default. However,
we are entered with register 13 pointing to the LIFO stack. To
resolve this the bootstrap program should tuck register 13 in a
safe place in the DSA it allocates.

Before invoking the XPI API, we save the current register 13 in a
variable, replace it with the register 13 tucked away in the
’safe place’ then restore R13 when we’re through.

To ensure that we still have addressability to the variable,
We have the option to use WSA or a register.
We cannot use the local stack storage because
register 13 points to the local stack and we just overlayed the
register.

**
*/

typedef struct
{

void *stack_hdr_p;
void *stack_user_area_p;
dfhuepar_t *ueparm_p;

} mtl_parm_t;

CICS exit programming API example program: MTL2XPI (Part 1 of 3)

Figure 60. CICS exit programming API example program: MTL2XPI

Appendix B. CICS programming interface examples 151

static void get_storage(dfhuepar_t *plist,void **storage)
{

void *pstg;
short getlen;
void *sm_arg;
void *kern_stack;
register saverd;
register rx;

getlen = 128;
sm_arg = plist->uepxstor;
kern_stack = plist->uepstack;

* Call the XPI function. *
* The syntax for DFHSMMCX GETMAIN is *
* DFHSMMCX [CALL,] *
* [CLEAR,] *
* [IN, *
* FUNCTION(GETMAIN), *
* GET_LENGTH(name4 | (Rn) | expression), *
* STORAGE_CLASS(CICS|CICS24|SHARED_CICS| *
* SHARED_CICS24|SHARED_USER|SHARED_USER24|USER| *
* USER24|TERMINAL), *
* SUSPEND(NO|YES), *
* [INITIAL_IMAGE(name1 | literalconst),] *
* [TCTTE_ADDRESS(name4 | (Ra)),]] *
* [OUT, *
* ADDRESS(name4 | (Rn) | *), *
* RESPONSE(name1 | *), *
* REASON(name1 | *)] *
* In this example, we use the GET_LENGTH, STORAGE_CLASS and *
* SUSPEND input parameters, and output the ADDRESS, and the *
* response and reason. *

__asm(" L %0,%4 \n"
" LR %2,13\n"
" L 13,%5\n"
" USING DFHSMMC_ARG,%0 \n"
" DFHSMMCX CALL,CLEAR,"
"IN,FUNCTION(GETMAIN),"

"GET_LENGTH(%3),"
"SUSPEND(YES),"
"STORAGE_CLASS(USER),"

"OUT,"
"ADDRESS(%1),"
"RESPONSE(*),"
"REASON(*)\n"

" DROP %0\n"
" LR 13,%2"
: "=r"(rx),"=m"(pstg),"=r"(saverd)
: "m"(getlen),"m"(sm_arg),"m"(kern_stack)

);

*storage = pstg;
}

CICS exit programming API example program: MTL2XPI (Part 2 of 3)

152 z/OS V2R1.0 Metal C Programming Guide and Reference

static void business_logic(dfhuepar_t *plist, void * storage)
{
}

static void free_storage(dfhuepar_t *plist, void *storage)
{

register rx;
register saverd;
void *sm_arg;
void *kern_stack;
void *uepstack;
void *address;

sm_arg = plist->uepxstor;
kern_stack = plist->uepstack;
address = storage;

__asm(" L %0,%3\n"
" LR %1,13\n"
" L 13,%4\n"
" USING DFHSMMC_ARG,%0\n"
" DFHSMMCX CALL,CLEAR,"
"IN,"

"FUNCTION(FREEMAIN),"
"ADDRESS(%2),"
"STORAGE_CLASS(USER),"

"OUT,"
"RESPONSE(*),"
"REASON(*)\n"

" LR 13,%1\n"
" DROP %0"
: "=r"(rx),"=r"(saverd)
: "m"(address),"m"(sm_arg),"m"(kern_stack)

);
}

#pragma prolog(mtl2xpi,"MTLENT")
#pragma epilog(mtl2xpi,"MTLXIT")

void mtl2xpi(dfhuepar_t *plist)
{

__asm(" DFHUEXIT TYPE=XPIENV\n"
" COPY DFHSMMCY\n"
"&CCN_CSECT CSECT");

void *storage;
get_storage(plist,&storage);
business_logic(plist,storage);
free_storage(plist,storage);

}

CICS exit programming API example program: MTL2XPI (Part 3 of 3)

CICS definitions
The CICS API example program is, for all intents and purposes, an assembler
program. It requires the normal CICS definitions, using for example CEDA or the
CICS Explorer, to define it as a program and the definition to map the program to
a CICS transaction.

Appendix B. CICS programming interface examples 153

The exit is enabled using the ENABLE PROGRAM command, for example via the
CECI transaction:
CECI ENABLE PROGRAM(MTLBTXPI) EXIT(’xtsereq’) start

The exit is triggered each time a temporary storage request is to be serviced by
CICS. The following command issued using the CECI transaction is an example of
a request to temporary storage.
CECI WRITEQ TS QU(’NOELNOEL’) FROM(’HELLO’)

Figure 61 describes the CEDA definition for the API example program.

Figure 62 describes the CICS transaction definition.

CEDA View TRANSaction (MET0)
TRANSaction : MET0
Group : NCSMETAL
DEScription :
PROGram : METALH
TWasize : 00000 0-32767
PROFile : DFHCICST
PArtitionset :
STAtus : Enabled Enabled | Disabled
PRIMedsize : 00000 0-65520
TASKDATALoc : Any Below | Any
TASKDATAKey : User User | Cics
STOrageclear : No No | Yes
RUnaway : System System | 0 | 500-2700000
SHutdown : Disabled Disabled | Enabled
ISolate : Yes Yes | No

Figure 63 on page 155 describes the CICS XPI example as defined in the CEDA.

CEDA View PROGram (METALH)
PROGram : METALH
Group : NCSMETAL
DEScription : FIRST METAL PROGRAM
Language : Assembler CObol | Assembler | Le370 | C | Pli
RELoad : No No | Yes
RESident : No No | Yes
USAge : Normal Normal | Transient
USElpacopy : No No | Yes
Status : Enabled Enabled | Disabled
RSl : 00 0-24 | Public
CEdf : Yes Yes | No
DAtalocation : Any Below | Any
EXECKey : User User | Cics
COncurrency : Quasirent Quasirent | Threadsafe
Api : Cicsapi Cicsapi | Openapi

Figure 61. CICS CEDA definition for the API example program

Figure 62. CICS transaction definition

154 z/OS V2R1.0 Metal C Programming Guide and Reference

JCL example
The following example JCL shows you how to build the example code. You need
to provide appropriate libraries in place of those shown in the example JCL, such
as MTLUSR.XPLINK.LOAD and MTLUSR.METAL.OBJ.

CEDA View PROGram (MTLBTXPI)
PROGram : MTLBTXPI
Group : NCSMETAL
DEScription :
Language : Assembler CObol | Assembler | Le370 | C | Pli
RELoad : No No | Yes
RESident : No No | Yes
USAge : Normal Normal | Transient
USElpacopy : No No | Yes
Status : Enabled Enabled | Disabled
RSl : 00 0-24 | Public
CEdf : Yes Yes | No
DAtalocation : Any Below | Any
EXECKey : Cics User | Cics
COncurrency : Quasirent Quasirent | Threadsafe
Api : Cicsapi Cicsapi | Openapi

Figure 63. Defining the CICS XPI example in the CEDA

//MTLUSR00 JOB (999,POK),’METAL’,CLASS=A,MSGCLASS=H,NOTIFY=&SYSUID
//*
//* BINDER USING THE METAL XPI SAMPLE PROGRAM
//* //LKED EXEC PGM=IEWL,REGION=256K,
// PARM=’LIST,LET,XREF,MAP,AC(0),RENT,REUS,AMODE(31)’
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD SPACE=(CYL,(10,10)),UNIT=SYSDA
//SYSLMOD DD DSN=MTLUSR.XPLINK.LOAD,DISP=SHR
//SYSLIB DD DSN=CICSTS41.CICS.SDFHLOAD,DISP=SHR
// DD DISP=SHR,DSN=MTLUSR.METAL.OBJ
// DD DISP=SHR,DSN=MTLUSR.METALC.SCCNOBJ
//USROBJ DD DSN=MTLUSR.METAL.OBJ,DISP=SHR
//SYSLIN DD *
INCLUDE USROBJ(MTLBTXPI)
INCLUDE USROBJ(MTL2XPI)
ENTRY MTLBTXPI
NAME MTLBTXPI(R)
/*

Figure 64. CICS LNKXPI JCL example

Appendix B. CICS programming interface examples 155

//MTLUSR0 JOB (999,POK),’CICSASM’,CLASS=A,MSGCLASS=H,NOTIFY=&SYSUID
//XPIASM PROC DSN=,MEM=
//***
//* run ASM
//***
//STEPASM EXEC PGM=ASMA90,PARM=OBJECT,REGION=0M
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSPRINT DD SYSOUT=*
//SYSIN DD DSN=&DSN(&MEM),DISP=SHR
//SYSLIN DD DISP=SHR,DSN=MTLUSR.METAL.OBJ(&MEM)
//SYSLIB DD DISP=SHR,DSN=SYS1.MACLIB
// DD DISP=SHR,DSN=CICSTS41.CICS.SDFHMAC
// DD DISP=SHR,DSN=CEE.SCEEMAC
// PEND
//**
//* START OF COMPILES:
//**
//COMP EXEC XPIASM,DSN=’DEV.METALC.SAMPCODE’,MEM=’MTLBTXPI’

Figure 65. CICS ASMXPI JCL example

156 z/OS V2R1.0 Metal C Programming Guide and Reference

//MTLUSRPC JOB (999,POK),’CCOMP’,NOTIFY=&SYSUID,
// CLASS=A,MSGCLASS=H
//*--
//* CICS Metal JCL
//*
//***
//* Compile the code
//***
//CCAM PROC IDSN=,ADSN=,ODSN=,MEM=
//CC EXEC PGM=CCNDRVR,REGION=0M,
// PARM=(’OPTFILE(DD:OPTIONS)’)
//STEPLIB DD DISP=SHR,DSN=MTLCICS.METALC.SCCNCMP
// DD DSN=CICSTS41.CICS.SDFHLOAD,DISP=SHR
// DD DISP=SHR,DSN=CEE.SCEERUN
// DD DISP=SHR,DSN=CEE.SCEERUN2
//OPTIONS DD DISP=SHR,DSN=MTLCICS.METALC.SAMPJCL(OPTXPI)
//SYSLIB DD PATH=’/usr/include/metal’,PATHOPTS=ORDONLY
// DD DSN=CICSTS41.CICS.SDFHC370,DISP=SHR
// DD DSN=CICSTS41.CICS.SDFHMAC,DISP=SHR
// DD DSN=MTLCICS.METALC.SAMPMAC,DISP=SHR
//**
//SYSUT1 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSUT4 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSUT5 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT6 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT7 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT8 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT9 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=VB,LRECL=137,BLKSIZE=882)
//SYSUT10 DD SYSOUT=*
//SYSUT14 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT15 DD SYSOUT=*
//**
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSCPRT DD SYSOUT=*
//*SYSLIN DD DSN=&&SYSLIN,DISP=(NEW,PASS),SPACE=(TRK,(10,100)),
//* UNIT=SYSDA,BLKSIZE=3200,LRECL=80,RECFM=FB,DSORG=PS
//SYSLIN DD DISP=SHR,DSN=&ADSN(&MEM)
//SYSIN DD DISP=SHR,DSN=&IDSN(&MEM)
//***
//* Assemble the code
//***
//ASM EXEC PGM=ASMA90,REGION=0M,PARM=’GOFF’
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
// DD DISP=SHR,DSN=CICSTS41.CICS.SDFHMAC
// DD DISP=SHR,DSN=CEE.SCEEMAC
// DD DSN=MTLCICS.METALC.SAMPMAC,DISP=SHR
//SYSUT1 DD UNIT=(SYSDA,SEP=SYSLIB),SPACE=(CYL,(10,5)),DSN=&SYSUT1
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DISP=SHR,DSN=&ODSN(&MEM)
//SYSIN DD DISP=SHR,DSN=&ADSN(&MEM)
// PEND
//*
//COMP EXEC CCAM,IDSN=’MTLCICS.METALC.SAMPCODE’,
// ADSN=’MTLUSR.METAL.GENASM’,
// ODSN=’MTLUSR.METAL.OBJ’,MEM=MTL2XPI
//*

Figure 66. CICS CCXPI JCL example

Appendix B. CICS programming interface examples 157

METAL GENASM
OPT(0) PHASEID LANGLVL(EXTENDED)
SO LIST CSECT
float(ieee)
DEF(MVS,CM_MVS,_TCP31_PROTOS)
nose se(/usr/include/metal, DD:SYSLIB)
SSCOM
AGG
RENT

Figure 67. CICS OPTXPI JCL example

158 z/OS V2R1.0 Metal C Programming Guide and Reference

Appendix C. Accessibility

Accessible publications for this product are offered through the z/OS Information
Center. If you experience difficulty with the accessibility of any z/OS information,
send an email to mhvrcfs@us.ibm.com or write to the following address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size.

Using assistive technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for information
about accessing TSO/E and ISPF interfaces. These guides describe how to use
TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF
keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users accessing the
z/OS Information Center using a screen reader. In dotted decimal format, each
syntax element is written on a separate line. If two or more syntax elements are
always present together (or always absent together), they can appear on the same
line, because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually
exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you
know that your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax

© Copyright IBM Corp. 2013 159

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol can be used next to a dotted decimal number to indicate
that the syntax element repeats. For example, syntax element *FILE with dotted
decimal number 3 is given the format 3 * FILE. Format 3* FILE indicates that
syntax element FILE repeats. Format 3* * FILE indicates that syntax element *
FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol giving information about the syntax elements. For example, the lines 5.1*,
5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a
comma. If no separator is given, assume that you use a blank to separate each
syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is
defined elsewhere. The string following the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you
should refer to separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:
v ? means an optional syntax element. A dotted decimal number followed by the ?

symbol indicates that all the syntax elements with a corresponding dotted
decimal number, and any subordinate syntax elements, are optional. If there is
only one syntax element with a dotted decimal number, the ? symbol is
displayed on the same line as the syntax element, (for example 5? NOTIFY). If
there is more than one syntax element with a dotted decimal number, the ?
symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you
know that syntax elements NOTIFY and UPDATE are optional; that is, you can
choose one or none of them. The ? symbol is equivalent to a bypass line in a
railroad diagram.

v ! means a default syntax element. A dotted decimal number followed by the !
symbol and a syntax element indicates that the syntax element is the default
option for all syntax elements that share the same dotted decimal number. Only
one of the syntax elements that share the same dotted decimal number can
specify a ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and
2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword.
In this example, if you include the FILE keyword but do not specify an option,
default option KEEP will be applied. A default option also applies to the next
higher dotted decimal number. In this example, if the FILE keyword is omitted,
default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1!
(KEEP), and 2.1.1 (DELETE), the default option KEEP only applies to the next
higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE
is omitted.

160 z/OS V2R1.0 Metal C Programming Guide and Reference

v * means a syntax element that can be repeated 0 or more times. A dotted
decimal number followed by the * symbol indicates that this syntax element can
be used zero or more times; that is, it is optional and can be repeated. For
example, if you hear the line 5.1* data area, you know that you can include one
data area, more than one data area, or no data area. If you hear the lines 3*, 3
HOST, and 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Note:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one
item with that dotted decimal number, you can repeat that same item more
than once.

2. If a dotted decimal number has an asterisk next to it and several items have
that dotted decimal number, you can use more than one item from the list,
but you cannot use the items more than once each. In the previous example,
you could write HOST STATE, but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.
v + means a syntax element that must be included one or more times. A dotted

decimal number followed by the + symbol indicates that this syntax element
must be included one or more times; that is, it must be included at least once
and can be repeated. For example, if you hear the line 6.1+ data area, you must
include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE,
you know that you must include HOST, STATE, or both. Similar to the * symbol,
the + symbol can only repeat a particular item if it is the only item with that
dotted decimal number. The + symbol, like the * symbol, is equivalent to a
loop-back line in a railroad syntax diagram.

Appendix C. Accessibility 161

162 z/OS V2R1.0 Metal C Programming Guide and Reference

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2013 163

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

164 z/OS V2R1.0 Metal C Programming Guide and Reference

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: IBM Lifecycle Support for

z/OS (http://www.ibm.com/software/support/systemsz/lifecycle/)
v For information about currently-supported IBM hardware, contact your IBM

representative.

Programming interface information
This information documents intended programming interfaces that allow the
customer to write programs to obtain the services of z/OS Metal C runtime library.

Standards
The following standards are supported in combination with the z/OS Metal C
runtime library:
v The C language is consistent with Programming languages - C (ISO/IEC

9899:1999). This standard has officially replaced American National Standard for
Information Systems-Programming Language C (X3.159–1989) and is technically
equivalent to the ANSI C standard. The compiler supports the changes adopted
into the C Standard by ISO/IEC 9899:1990/Amendment 1:1994. For more
information on ISO, visit their web site at http://www.iso.ch/.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names If these and other IBM trademarked terms are
marked on their first occurrence in this information with a trademark symbol (® or
™), these symbols indicate U.S. registered or common law trademarks owned by
IBM at the time this information was published. Such trademarks may also be
registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at Copyright and trademark information at
www.ibm.com/legal/copytrade.shtml.

Adobe, Acrobat, and PostScript are either registered trademarks or trademarks of
Adobe Systems Incorporated in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

IEEE is a trademark of the Institute of Electrical and Electronics Engineers, Inc. in
the United States and other countries.

Notices 165

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.iso.ch/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Other company, product, and service names might be trademarks or service marks
of others.

166 z/OS V2R1.0 Metal C Programming Guide and Reference

Index

Special characters
__asm operand lists

defining read-write __asm
operands 26

__asm operands
C expressions as __asm operands 22
defining

read-write __asm operands 26
multiple

defining 24
read-write 26

__asm statement
inserting your own assembly

instructions 21
using

code format string 21
__asm statements

C expressions as__asm operands 22
code format string 22
constraints 22
examples

read-write __asm operands 26
specifiers 22

__cinit() library function 72
__far qualifier

far pointer 35
__malloc31() library function 81
_cterm() library function 75
_MI_BUILTN macro

data space allocation 39
_MI.BUILTN macro

AR-mode functions 38
far-pointer management 38

-mgoff HLASM option
and Metal C programs 45

pragma insert_asm
inserting your own assembly

statements 30
#pragma directive

MYEPILOG 13
MYPROLOG 13

+ constraint
defining read-write __asm

operands 27

A
abs() library function 69
absolute value 69

integer argument 69
access registers

AR mode 37
management by compiler 37
restoring 39
saving 39

accessibility 159
contact IBM 159
features 159

ADATA debugging information
additional source-level information

output file format 51
CDAASMC procedure 50
CDAHLASM invocation 50

addressing mode
and global SET symbols 14
and passing parameters 2
attributes

amode31 31
amode64 31
recognition of 31

switching 31
commands 46
example 31

ALESERV HLASM macro
allocating alternative data spaces 38

ALET
far pointer 35
implicit association 37

ALIAS instructions
recognition of 4

allocating
realloc() 86

allocation
_MI_BUILTN macro 39
of data space 39

alphabetic character attribute 77
alternative data spaces

accessing 37
allocating 38

AMODE
and global SET symbols 14
and passing parameters 2
function save areas 3
return values 3
switching

commands 46
example 31
external function calls 31
internal function calls 31

AR mode 35
linkage conventions 39
programming support 35

far-pointer management 38
AR-mode functions

accessing alternative data spaces 37
ALET associations 37
built-in functions 38
C language constructs and far

pointers 36
data space allocation 39, 42
default prolog and epilog code 39
far pointers

declaration 35
dereference 35
reference 35

memory references 37
arguments

accessing 118
ARMODE compiler option 35

armode function attribute 35
as command

building Metal C programs 45
ASC mode

restoring 39
switching 39

ASMLANGX debugging utility
debugging information format 50

ASMLANGX utility
additional source-level information

ADATA debugging
information 51

assembly job step 47
assembly language programs

debugging 51
load module size 51
source-level information 51

assembly statements
embedding

code format string 22
example, simple 21
file-scope header 5
function entry point marker 6
function header 6
function property block 6
making a C expression available to

HLASM 23
making a C variable available to

HLASM 22
making a C variable expression an

__asm operand 22
operands 24

inserting
executable 21
non-executable 30

user-supplied 20
assistive technologies 159
atoi() library function 70
atol() library function 70
atoll() library function 71
automatic variables

defining 9
mapping 9

B
batch environment

binder invocation procedures 47
building Metal C programs 47

assembly step 47
bind step 47
compilation step 47

debugging assembly language
programs 51

debugging information 50
extracting source-level

information 50
f 32
IDF debugging information 51

bind job step 47
blank character attribute 78

© Copyright IBM Corp. 2013 167

buffers
format and print data 121

building Metal C programs
assembly step

symbols longer than eight
characters 45

built-in functions
AR-mode functions 38
far-pointer management

AR-mode programming
support 38

builtins.h header file 55
data space allocation 39
far versions of library functions 38
far-pointer management 38

C
C expressions

used as __asm operands 22
C language constructs

far pointers 36
C memory functions

far versions 38
C string functions

far versions 38
C string pointer

copying to far pointer 42
C symbols

name-encoding 4
calloc() library function 71
CDAASMC JCL procedure

binder invocation 47
extracting source-level

information 50
invoking 47

CDAHLASM
invocation 50

CEE.SCEEPROC data set
binder invocation batch

procedures 47
characters

conversions
lowercase 118
uppercase 118

finding in a string 105
CICS

CICS API example 128
CICS definitions 153
CICS XPI example 142
JCL example 155
programming interface examples 127
runtime environment adapter 127

CICS programming interface
examples 127

classifying characters 76
clobber list

example 25
code base registers 4

clearing 9
code format string

description 21
in an __asm statement 22
substitution specifiers 22
treatment of 22

code format strings
data space allocation 39

code format strings (continued)
examples

read-write __asm operands 26
command

syntax diagrams x
comparing

strcmp() 101
strcspn() 102
strings 101, 102, 104
strncmp() 104

compilation job step 47
compiler options

AMODE
characteristics of

compiler-generated assembly
source code 4

ARMODE|NOARMODE 35
EPILOG

versus #pragma epilog 13
LONGNAME

entry point definition 6
entry point marker 6
external symbols 5
function property block 6

LP64
characteristics of

compiler-generated assembly
source code 4

programming with Metal C 2
PROLOG

versus #pragma prolog 13
SERVICE

optional prefix data 10
concatenating

strcat() 99
strings 99, 103
strncat() 103

constants
defining 10

conversions
character

to lowercase 118
to uppercase 118

specifier
argument in sscanf() 97

string to unsigned integer 115
copying

strcpy() 101
strings 101, 105
strncpy() 105

CSECT 4
ctype.h header file 55

D
data spaces

access 35
accessing 42
allocation 39
deallocation 39, 42
referencing 42

debugging
assembly language programs 51
data formats 50
extracting source-level

information 50
ADATA 51

debugging (continued)
extracting source-level information

(continued)
ASMLANGX 51

IDF 51
in a batch environment 50
Interactive Debug Facility (IDF) 51
interactive utility 51
source-level information 51

div_t structure 75
div() library function 75
division 75
DSA

acquisition and release 4
address space 39
and global SET symbols 14
default

AR-mode functions 39
function save areas 3
location 39
obtaining 12
obtaining and releasing 20
pointer 20
preallocation 13

DSECT statement
and file-scope trailer 10
and function trailer 9

DSPSERV HLASM macro
allocating alternative data spaces 38

DWARF debugging information
CDAASMC procedure 50
CDAHLASM invocation 50

dynamic storage area
acquisition and release 4
function save areas 3
location 39
obtaining and releasing 20, 39
preallocation 13

E
entry point

defining
under LONGNAME compiler

option 6
entry point marker

defining
under LONGNAME compiler

option 6
epilog code

AR-mode functions 12, 39
default 20

AR-mode functions 39
DSA pointer 20
NAB pointer 20
primary functions 12
sample 19
supplying your own 13

EXIT_FAILURE macro 63
EXIT_SUCCESS macro 63
external symbols

and generated HLASM code 4
external variables

defining 10
initializing 10

168 z/OS V2R1.0 Metal C Programming Guide and Reference

F
F4SA save area format

and AMODE 3
and NAB 4

F7SA save area format
and AMODE 3
and NAB 4

far pointers
ALET associations 37
C language constructs 36
constructing 38
copied from C string pointers 42
declaration 35
dereference 35
dereferencing 42
passing and returning 39
reference 35
setting and getting

_MI.BUILTN macro 38
built-in functions 38

far_strcpy library function
data space allocation 42

file-scope header
structure 5

file-scope trailer
structure 10

float.h header file 55
fopen() library function 61
formatted I/O 88
free() library function 76
function entry point marker

structure 6
function header

structure 6
function property block

defining
under LONGNAME compiler

option 6
structure 6

function prototypes
and AMODE 31

function save area
chaining 12

function save areas
AMODE 3
formats 3
setup 3

function trailer
structure 9

functions
AR-mode

prototypes 35
arguments 118
attributes

AR-mode 35
prototypes

AR-mode 35

G
global SET symbols

and function entry point marker 6
and function header 6
function property block 6

global variables
register specification 30

global variables (continued)
storage of 30

GOFF HLASM option
and ALIAS instructions 4
when to specify 45

GPRs
and global SET symbols 14

H
header files

builtins.h 38
data space allocation 39
far-pointer management 38

stdint.h header file 61
string.h

data space allocation 39
strings.h

data space allocation 39
heap services

user-replaceable 67
hexadecimal 77
HLASM

as utility
invoking 45

global SET symbols
values 6

ld utility
invoking 46

HLASM opotions
GOFF

and ALIAS instructions 4
HLASM options

with LONGNAME compiler
option 45

HLASM source program,
compiler-generated 4

characteristics 4
structure 5

I
IDF debugger

invocation 51
insert_asm pragma

inserting your own assembly
statements 30

integer
pseudo-random 85, 86

Interactive Debug Facility (IDF)
generation of information 51

inttypes.h header file 56
IPA and HOT options

to build Metal C programs 48
isalnum() library function 76, 77
isalpha() library function 77
isblank() library function 77, 78
iscntrl() library function 77
isdigit() library function 77
isgraph() library function 77
islower() library function 77
isprint() library function 77
ispunct() library function 77
isspace() library function 77
isupper() library function 77
isxdigit() library function 77

J
JCL

assembly job step 47
bind job step 47
compilation job step 47

JCL procedures
CEE.SCEEPROC data set 47
to build Metal C programs 47

K
keyboard

navigation 159
PF keys 159
shortcut keys 159

L
labs() library function 79
ld command

building Metal C programs
bind options 46

ldiv() library function 79
length function 103
library functions

far versions 38
limits.h header file 58
linkage conventions

AR-mode functions
ASC mode 39

MVS and Metal C 2
Linkage Editor

TEST option and load module
size 51

list form of a macro
specifying and using 28

llabs() library function 79
lldiv() library function 80
locating storage 76
LONGNAME compiler option 4

and HLASM options 45
and Metal C programs 46

lowercase
tolower() 118

LTORG statement
and function trailer 9

M
mainframe

education ix
malloc() library function 81
matching failure 99
math.h header file 59
MB_CUR_MAX macro 63
memccpy() library function 82
memchr() library function 82
memcmp() library function 83
memcpy() library function 83
memmove() library function 84
memory

allocation 86
memory references

AR mode 37
memset() library function 84

Index 169

Metal C
feature and benefits 2

Metal C programs
argc argv parsing 35
building 44

alternative name for "main" 43
assembly step 45
compilation step 45
xlc utility 45
z/OS UNIX System Services 45

IPA and HOT enablement 48
Example 49

JCL procedures to build 47
ld command 46
reentrant Metal C program 32
RENT option 32

metal.h header file 60
MVS linkage conventions

and Metal C 2
MYEPILOG #pragma directive

using 13
MYPROLOG #pragma directive

using 13

N
NAB linkage extension

description 4
name encoding

and C symbols 4
navigation

keyboard 159
next available byte (NAB)

pre-allocated stack space 3, 4
noarmode function attribute 35
NOTEST assembler option

and load module size 51
Notices 163
NULL macro 60, 61
NULL pointer 60, 61
NULL pointer constant 63
numbers 76

O
object code control

address space control 35
ASC mode 35

offsetof macro 60

P
parameter passing

and AMODE 2
parameters

and global SET symbols 14
defining 9
mapping 9

pointers
storing 23

precision argument, fprintf() family 91
prefix data

example 10
structure 10

printing
sprintf() 88

printing (continued)
vsprintf() 121

prolog
user-supplied

global SET symbols 14
prolog code

AR-mode functions 12, 39
default 20

AR-mode functions 39
DSA pointer 20
NAB pointer 20
primary functions 12
sample 17

ptrdiff_t type in stddef header file 60

Q
qsort() library function 85

R
RAND_MAX macro 63
rand_r() library function 86
rand() library function 85
random

number generator 85, 86
number initializer 94
rand_r() 86
rand() 85
srand() 94

read-write operands, defining
using the + constraint 27

reading
formatted 94
scanning 94

realloc() library function 86
reallocation of block size 86
reentrancy 4
register storage class specifier

register specification 30
registers

access 37
clobbering 25
controlling use of 25
hardware access 35
specified as __asm operands 22
specifying 30

remainder 75
resource limits defined 58
return values

AMODE 3
formats 3
setup 3

S
save area formats

and AMODE 3
and NAB 4

scanning
sscanf() 94

SCCNSAM data set
epilog code sample 19
prolog code sample 17

searching
strchr() 100

searching (continued)
strings 100, 105
strings for tokens 110, 111
strspn() 106

seed for random numbers 94
sending comments to IBM xiii
SERVICE compiler option

optional prefix data 10
SET symbols

and AMODE 14
and DSA 14
and GPRs 14
and number of fixed parameters 14
and storage instructions 14
compiler-defined 14
for a user-supplied prolog 14

shortcut keys 159
size_t structure 60
snprintf() library function 87
source-level information

extracting 50
extracting in a batch environment

CDAASMC 50
for dissasembly

suppressing 51
for IDF 51

space (white space)
characters

testing 77
sprintf() library function 88
srand() library function 94
sscanf() library function 94
stack

allocating space 28
pre-allocated stack space 3, 4

standard save area format
and AMODE 3
and NAB 4

static variables
defining 10
mapping 10

stdarg.h header file 60
stddef.h header file 60
stdint.h header file 61
stdio.h header file 60
stdlib.h header file 62
storage

allocation 86
storage instructions

and global SET symbols 14
strcat() library function 99
strchr() library function 100
strcmp() library function 101
strcpy() library function 101
strcspn() library function 102
strdup() library function 102
streams

formatted I/O 94
string.h header file 63
strings

comparing 102, 104
concatenating 99, 103
conversions

to unsigned integer 115
copying 101, 105
ignoring case 101, 102
initializing 105

170 z/OS V2R1.0 Metal C Programming Guide and Reference

strings (continued)
length of 103
searching 100, 105

strspn() 106
searching for tokens 110, 111
substring

locating 107
strings.h header file

data space allocation 39
strlen() library function 103
strncat() library function 103
strncmp() library function 104
strncpy library function

data space allocation 39
strncpy() library function 105
strpbrk() library function 105
strrchr() library function 106
strspn() library function 106
strstr() library function 107
strtod() library function 107
strtof() library function 108
strtok_r() library function 111
strtok() library function 110
strtol() library function 111
strtold() library function 113
strtoll() library function 114
strtoul() library function 115
strtoull() library function 116
Summary of changes xv
syntax diagrams

how to read x
syntax of format for sprintf() 89

T
TEST assembler option

and load module size 51
testing 76, 77, 78

characters
white space 77

numbers
hexadecimal 77

tokens
strtok_r() 111
strtok() 110

tolower() library function 118
toupper() library function 118

U
uppercase

toupper() 118
user interface

ISPF 159
TSO/E 159

user-replaceable heap services 67

V
va_arg() macro 118
va_end() macro 118
va_start() macro 118
variables

making a C variable available to
HLASM 22

vsnprintf() library function 120

vsprintf() library function 121
vsscanf() library function 121

X
xlc utility

and HLASM source file 45

Z
z/OS Basic Skills information center ix
z/OS UNIX System Services

as utility 45
bind options 45

ld utility
bind options 46

Index 171

172 z/OS V2R1.0 Metal C Programming Guide and Reference

����

Product Number: 5650-ZOS

Printed in USA

SC14-7313-00

	Contents
	Figures
	Tables
	About this document
	Who should read this document
	Where to find more information
	Information updates on the web
	The z/OS Basic Skills Information Center

	How to read syntax diagrams

	How to send your comments to IBM
	If you have a technical problem

	z/OS Version 2 Release 1 summary of changes
	Chapter 1. About IBM z/OS Metal C
	Metal C environment
	Programming with Metal C
	Metal C and MVS linkage conventions
	Compiler-generated HLASM source code
	Characteristics of compiler-generated HLASM source code
	Structure of a compiler-generated HLASM source program

	Prolog and epilog code
	Supplying your own prolog and epilog code
	Compiler-generated global SET symbols
	SCCNSAM(CCNZGBL) macro
	SCCNSAM(MYPROLOG) macro
	SCCNSAM(MYEPILOG) macro
	Compiler-generated default prolog and epilog code

	Supplying your own HLASM statements
	Inserting HLASM instructions into the generated source code
	Using the __asm statement
	Treatment of the code format string
	C expressions as __asm operands
	C expressions as read-write __asm operands
	Specifying and using the list form of a macro
	Inserting non-executable HLASM statements into the generated source code
	Reserving a register for a global variable

	AMODE-switching support
	RENT mode support
	argc argv parsing support
	AR-mode programming support
	Defining an alternative name for function "main"
	Building Metal C programs
	Examples of building Metal C programs
	C source file
	Building Metal C programs using z/OS UNIX System Services
	Building Metal C programs using JCL
	Building Metal C programs with IPA
	Generation of debugging information
	IDF debugger invocation

	Summary of useful references for the Metal C programmer

	Chapter 2. Header files
	builtins.h
	ctype.h
	float.h
	inttypes.h
	limits.h
	math.h
	metal.h
	stdarg.h
	stddef.h
	stdio.h
	stdint.h
	stdlib.h
	string.h

	Chapter 3. C functions available to Metal C programs
	Characteristics of Metal C runtime library functions
	System and static object libraries
	User-replaceable heap services
	abs() — Calculate integer absolute value
	atoi() — Convert character string to integer
	atol() — Convert character string to long
	atoll() — Convert character string to signed long long
	calloc() — Reserve and initialize storage
	__cinit() - Initialize a Metal C environment
	__cterm() - Terminate a Metal C environment
	div() — Calculate quotient and remainder
	free() — Free a block of storage
	isalnum() to isxdigit() — Test integer value
	isalpha() — Test for alphabetic character classification
	isblank() — Test for blank character classification
	iscntrl() — Test for control classification
	isdigit() — Test for decimal-digit classification
	isgraph() — Test for graphic classification
	islower() — Test for lowercase
	isprint() — Test for printable character classification
	ispunct() — Test for punctuation classification
	isspace() — Test for space character classification
	isupper() — Test for uppercase letter classification
	isxdigit() — Test for hexadecimal digit Classification
	labs() — Calculate long absolute value
	ldiv() — Compute quotient and remainder of integral division
	llabs() — Calculate absolute value of long long integer
	lldiv() — Compute quotient and remainder of integral division for long long type
	malloc() — Reserve storage block
	__malloc31() — Allocate 31–bit storage
	memccpy() — Copy bytes in memory
	memchr() — Search buffer
	memcmp() — Compare bytes
	memcpy() — Copy buffer
	memmove() — Move buffer
	memset() — Set buffer to value
	qsort() — Sort array
	rand() — Generate random number
	rand_r() — Pseudo-random number generator
	realloc() — Change reserved storage block size
	snprintf() — Format and write data
	sprintf() — Format and Write Data
	srand() — Set Seed for rand() Function
	sscanf() — Read and Format Data
	strcat() — Concatenate Strings
	strchr() — Search for Character
	strcmp() — Compare Strings
	strcpy() — Copy String
	strcspn() — Compare Strings
	strdup() — Duplicate a String
	strlen() — Determine String Length
	strncat() — Concatenate Strings
	strncmp() — Compare Strings
	strncpy() — Copy String
	strpbrk() — Find Characters in String
	strrchr() — Find Last Occurrence of Character in String
	strspn() — Search String
	strstr() — Locate Substring
	strtod — Convert Character String to Double
	strtof — Convert Character String to Float
	strtok() — Tokenize String
	strtok_r() — Split String into Tokens
	strtol() — Convert Character String to Long
	strtold — Convert Character String to Long Double
	strtoll() — Convert String to Signed Long Long
	strtoul() — Convert String to Unsigned Integer
	strtoull() — Convert String to Unsigned Long Long
	tolower(), toupper() — Convert Character Case
	va_arg(), va_copy(), va_end(), va_start() — Access Function Arguments
	vsnprintf() — Format and print data to fixed length buffer
	vsprintf() — Format and Print Data to Buffer
	vsscanf() — Format Input of a STDARG Argument List

	Appendix A. Function stack requirements
	Appendix B. CICS programming interface examples
	Runtime environment adapter
	CICS application programming interface example
	Data structures
	Example description
	Example code

	CICS exit programming interface example
	Example code

	CICS definitions
	JCL example

	Appendix C. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Programming interface information
	Standards
	Trademarks

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	X
	Z

